Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we integrated the gene expression data of sepsis to reveal more precise genome-wide expression signature to shed light on the pathological mechanism of sepsis. Differentially expressed genes via integrating five microarray datasets from the Gene Expression Omnibus database were obtained. The gene function and involved pathways of differentially expressed genes (DEGs) were detected by GeneCodis3. Transcription factors (TFs) targeting top 20 dysregulated DEGs (including up- and downregulated genes) were found based on the TRANSFAC. A total of 1339 DEGs were detected including 788 upregulated and 551 downregulated genes. These genes were mostly involved in DNA-dependent transcription regulation, blood coagulation, and innate immune response, pathogenic escherichia coli infection, epithelial cell signaling in helicobacter pylori infection, and chemokine signaling pathway. TFs bioinformatic analysis of 20 DEGs generated 374 pairs of TF-target gene involving 47 TFs. At last, we found that five top ten upregulated DEGs (S100A8, S100A9, S100A12, PGLYRP1 and MMP9) and three downregulated DEGs (ZNF84, CYB561A3 and BST1) were under the regulation of three hub TFs of Pax-4, POU2F1, and Nkx2-5. The identified eight DEGs may be regarded as the diagnosis marker and drug target for sepsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428098PMC
http://dx.doi.org/10.1007/s13205-017-0713-xDOI Listing

Publication Analysis

Top Keywords

differentially expressed
12
expressed genes
12
transcription factors
8
gene expression
8
degs detected
8
downregulated genes
8
degs
7
genes
6
unveiling differentially
4
genes regulation
4

Similar Publications

Background: Prostate cancer is one of the most common malignancies in males worldwide. Serum prostate-specific antigen is a frequently employed biomarker in the diagnosis and risk stratification of prostate cancer; however, it is known for its low predictive accuracy for disease progression. New prognostic biomarkers are needed to distinguish aggressive prostate cancer from low-risk disease.

View Article and Find Full Text PDF

Esophageal cancer is a major cause of cancer-related death, often preceded with chronic inflammation and injuries. The NFκB/IKKβ pathway plays a central role in inflammation, yet its role in early esophageal carcinogenesis remains unclear. This study investigated the role of epithelial IKKβ in early esophageal carcinogenesis.

View Article and Find Full Text PDF

The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.

View Article and Find Full Text PDF

Exogenous Melatonin Regulates Hormone Signalling and Photosynthesis-Related Genes to Enhance Brassica napus. Yield: A Transcriptomic Perspective.

J Pineal Res

September 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.

Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.

View Article and Find Full Text PDF

[Prenatal fear stress impairs cognitive development in offspring rats by disrupting placental amino acid transport].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

School of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.

Objectives: To investigate the impact of prenatal fear stress on placental amino acid transport and emotion and cognition development in offspring rats.

Methods: Thirty pregnant Wistar rats were randomized equally into control and fear stress (induced using an observational foot shock model) groups. In each group, placental and serum samples were collected from 6 dams on gestational day 20, and the remaining rats delivered naturally and the offspring rats were raised under the same conditions until 8 weeks of age.

View Article and Find Full Text PDF