Publications by authors named "Zhixin DU"

Objectives: To investigate the impact of prenatal fear stress on placental amino acid transport and emotion and cognition development in offspring rats.

Methods: Thirty pregnant Wistar rats were randomized equally into control and fear stress (induced using an observational foot shock model) groups. In each group, placental and serum samples were collected from 6 dams on gestational day 20, and the remaining rats delivered naturally and the offspring rats were raised under the same conditions until 8 weeks of age.

View Article and Find Full Text PDF

The female reproductive system is highly complex, making it essential for applied research and translational medicine to accurately model its intricate physiological functions or develop strategies for restoring them. However, significant structural and functional differences between human and animal models, along with the limitations of static 2D cell culture technologies, underscore the need for more dynamic and sophisticated platforms, as well as therapies. These advancements are critical for deepening our understanding of reproductive biology and supporting clinical applications.

View Article and Find Full Text PDF

Objective: Prenatal stress has been proven to be associated with dysbiosis of the gut microbiota. Despite the established phenomenon that psychological stress can be transmitted to offspring and the ability of maternal gut microbiota to colonize the offspring's gut through vertical transmission, the intricate relationships linking cross-generational depression with the microbiome remain poorly understood.

Methods: We utilized combined fear stress stimuli to establish a pregnancy psychological stress (PPS) rat model, in which offspring exhibited trans-generational depression-like behavior.

View Article and Find Full Text PDF

Mental disorders (MD), such as anxiety, depression, and cognitive impairment, are very common during pregnancy and predispose to adverse pregnancy outcomes; however, the underlying mechanisms are still under intense investigation. Although the most common RNA modification in epigenetics, N-methyladenosine (mA) has been widely studied, its role in MD has not been investigated. Here, we observed that fat mass and obesity-associated protein (FTO) are downregulated in the hippocampus of pregnant rats with MD induced by fear stress and demonstrated that FTO participates in and regulates MD induced by fear stress.

View Article and Find Full Text PDF

Aims: Integrating bioinformatics and experimental validation to explore the mechanisms of inflammaging in the Brain.

Method: After dividing the GSE11882 dataset into aged and young groups, we identified co-expressed differentially expressed genes (DEGs) in different brain regions. Enrichment analysis revealed that the co-expressed DEGs were mainly associated with inflammatory responses.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a chronic debilitating disease characterized by inflammatory demyelination of the central nervous system. Grey matter (GM) lesions have been shown to be closely related to MS motor deficits and cognitive impairment. In this study, GM lesion-related genes for diagnosis and immune status in MS were investigated.

View Article and Find Full Text PDF

Our study focused on whether macrophages ferroptosis is associated with the pathogenesis of chronic obstructive pulmonary disease (COPD) or not. We first identified macrophage module genes by weighted gene co-expression network analysis (WGCNA) in RNA sequencing (RNA-seq) date from COPD, and then identified macrophage marker genes by comprehensive analysis of single-cell RNA sequencing (scRNA-seq) data from COPD macrophages. There were 126 macrophage marker genes identified, and functional enrichment analyses indicated that ferroptosis pathway genes were significantly enriched.

View Article and Find Full Text PDF

Inland saline marshes in northeastern China have unique soil characteristics and population distribution features. Hydrological change is a critical environmental factor causing wetland degradation and soil salinization in this region. The growth and reproductive responses of typical wetland plants to dry-wet alternations are essential for restoring inland saline marshes.

View Article and Find Full Text PDF

Background: With the commercialization of genetically modified organisms (GMOs) in the market, laboratories have undergone a significantly increased workload. A universal analytical approach was designed to achieve cost-efficient and high-throughput GMOs screening with high specificity and accuracy. The approach provides accurate qualification of authorized and unauthorized GMOs.

View Article and Find Full Text PDF

Virus infection in plants involves necrosis, chlorosis, and mosaic. The M strain of cucumber mosaic virus (M-CMV) has six distinct symptoms: vein clearing, mosaic, chlorosis, partial green recovery, complete green recovery, and secondary mosaic. Chlorosis indicates the loss of chlorophyll which is highly abundant in plant leaves and plays essential roles in photosynthesis.

View Article and Find Full Text PDF

High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide.

View Article and Find Full Text PDF

Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis.

View Article and Find Full Text PDF

The production of reactive oxygen species (ROS) forms part of the defense reaction of plants against invading pathogens. ROS have multifaceted signaling functions in mediating the establishment of multiple responses. To verify whether hydrogen peroxide (H2 O2 ) contributes to plant virus infection and the development of induced symptoms, we used fluorescence to monitor the generation of H2 O2 and confocal laser scanning microscopy (CLSM) to investigate the subcellular distribution of H2 O2 in leaves.

View Article and Find Full Text PDF

The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes.

View Article and Find Full Text PDF

Digital PCR has developed rapidly since it was first reported in the 1990 s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results.

View Article and Find Full Text PDF

Virus infection of plants may induce a variety of disease symptoms. However, little is known about the molecular mechanism of systemic symptom development in infected plants. Here we performed the first next-generation sequencing study to identify gene expression changes associated with disease development in tobacco plants (Nicotiana tabacum cv.

View Article and Find Full Text PDF