Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

How organisms gather and utilize information about their landscapes is central to understanding land-use patterns and population distributions. When such information originates beyond an individual's immediate vicinity, movement decisions require integrating information out to some perceptual range. Such nonlocal information, whether obtained visually, acoustically, or via chemosensation, provides a field of stimuli that guides movement. Classically, however, models have assumed movement based on purely local information (e.g., chemotaxis, step-selection functions). Here we explore how foragers can exploit nonlocal information to improve their success in dynamic landscapes. Using a continuous time/continuous space model in which we vary both random (diffusive) movement and resource-following (advective) movement, we characterize the optimal perceptual ranges for foragers in dynamic landscapes. Nonlocal information can be highly beneficial, increasing the spatiotemporal concentration of foragers on their resources up to twofold compared with movement based on purely local information. However, nonlocal information is most useful when foragers possess both high advective movement (allowing them to react to transient resources) and low diffusive movement (preventing them from drifting away from resource peaks). Nonlocal information is particularly beneficial in landscapes with sharp (rather than gradual) patch edges and in landscapes with highly transient resources.

Download full-text PDF

Source
http://dx.doi.org/10.1086/691099DOI Listing

Publication Analysis

Top Keywords

dynamic landscapes
12
perceptual ranges
8
success dynamic
8
movement
8
movement based
8
based purely
8
purely local
8
diffusive movement
8
advective movement
8
transient resources
8

Similar Publications

The MET receptor tyrosine kinase is a pivotal regulator of cellular survival, motility, and proliferation. Mutations leading to skipping of exon 14 (METΔex14) within the juxtamembrane domain of MET impair receptor degradation and prolong oncogenic signaling, contributing significantly to tumor progression across multiple cancer types. METΔex14 mutations are associated with aggressive clinical behavior, therapeutic resistance, and poor outcomes.

View Article and Find Full Text PDF

The regulation of follicular (F) and germinal center (GC) immune reactivity in human lymph nodes (LNs), particularly during the acute stages of viral infection, remains poorly understood: We have analyzed lung-draining lymph nodes (LD-LNs) from COVID-19 autopsies using multiplex imaging and spatial transcriptomics to examine the immune landscape with respect to follicular immune reactivity. We identified three groups of donors based on the Bcl6 prevalence of their Reactive Follicles (RFs): RF-Bcl6no/low, RF-Bcl6int, and RF-Bcl6high. A distinct B/TFH immune landscape, associated with increased prevalence of proliferating B-cell and TFH-cell subsets, was found in RF-Bcl6high LD-LNs.

View Article and Find Full Text PDF

From Barren Rock to Thriving Life: How Nitrogen Fuels Microbial Carbon Fixation in Deglaciated Landscapes.

Environ Sci Technol

September 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.

Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) are well known to give rise to a quantum confined structure of excitons. Because of this quantum confinement, new physics of hot exciton relaxation dynamics arises. Decades of work using transient absorption (TA) spectroscopy have yielded initial simple observations, such as estimates of the cooling rate from single pump photon energy experiments.

View Article and Find Full Text PDF

On Refining Exciton Dissociation and Charge Transport of Nonfullerene Organic Photovoltaics: from Star-Shaped Acceptors to Molecular Doping.

Adv Mater

September 2025

College of Smart Materials and Future Energy, and State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200438, China.

Nonfullerene acceptor-based organic solar cells have recently taken a milestone leap with power conversion efficiencies approaching 20%. A key to further boost the efficiencies up to the Shockley-Queisser limit rests upon attaining a delicate balance between exciton dissociation and charge transport. This perspective presents two seminal and reciprocal strategies developed by our group and others to reconcile the intricacy of charge carrier dynamics, spanning from intrinsic molecular structure design to extrinsic dopant exploitation.

View Article and Find Full Text PDF