98%
921
2 minutes
20
This study is based on the premise that managers are expected to regulate their emotions in the form of surface acting. More specifically, drawing on self-determination theory, we explored the role of psychological needs for autonomy, competence, and relatedness in explaining the influence of surface acting on supervisors' job satisfaction and work engagement over time. Data were collected at 2 time points, over a 3-month period, from a sample of 435 French managers working in the health care industry. Results revealed that surface acting negatively predicted managers' job satisfaction and work engagement over time, through the satisfaction of their psychological needs. However, managers' need thwarting did not explain these positive outcomes. Overall, these findings provide insight into the longitudinal adverse effects of managers' surface acting on their functioning and corroborate the distinct role of psychological need satisfaction and thwarting. Theoretical contributions and perspectives, as well as implications for practice are discussed. (PsycINFO Database Record
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/ocp0000080 | DOI Listing |
Int J Pharm
September 2025
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland. Electronic address:
Although temozolomide (TMZ) is routinely used in the treatment of glioblastoma multiforme, it is characterized by low stability, a short half-life, and serious side effects. Therefore, a new system for the effective, targeted delivery of TMZ based on superparamagnetic iron oxide nanoparticles (SPION) has been proposed. The nanoparticles were coated with hyaluronic acid, which acted as a stabilizing shell and targeting unit capable of effectively interacting with glioblastoma cells via the CD44 receptor.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China. Electronic address:
Fluorine (F)-doped carbon materials (FCMs) were one-pot synthesized and applied as the catalysts for the cycloaddition of carbon dioxide (CO) towards the cyclic carbonate for the first time. In this process, F dopants and oxygen (O)-containing groups on the carbon surface played a key role in enhancing the activity. The FCM synthesized at 500 °C (FCM-500) with 5.
View Article and Find Full Text PDFUltrason Sonochem
September 2025
College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China. Electronic address:
Addressing the issues of slow decomposition and low nutrient release efficiency associated with traditional straw returning, this study innovatively applied ultrasound-assisted centrifugal separation technology to prepare submicron/nano-straw particles and systematically conducted a multi-scale investigation from microscopic to macroscopic levels. The core finding reveals that when the particle size reaches the 1 μm threshold, ultrasonic cavitation vigorously disrupts the straw structure, leading to efficient lignin removal (77.45 %) and a significant reduction in cellulose crystallinity, thereby fundamentally enhancing the degradation rate.
View Article and Find Full Text PDFISME J
September 2025
Division of Biology and Biological Engineering, California Institute of Technology Pasadena, California, United States.
At methane seeps worldwide, syntrophic anaerobic methane-oxidizing archaea and sulfate-reducing bacteria promote carbonate precipitation and rock formation, acting as methane and carbon sinks. Although maintenance of anaerobic oxidation of methane (AOM) within seep carbonates has been documented, its reactivation upon methane exposure remains uncertain. Surface-associated microbes may metabolize sulfide from AOM, maintain carbonate anoxia, contribute to carbonate dissolution, and support higher trophic levels; however, these communities are poorly described.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Physics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, USA.
Conventional TiO₂ nanoparticle syntheses rely on high temperatures, toxic reagents and multi-step routes that impede scalability and sustainability. Here, we deliver the first green synthesis of TiO₂ nanoparticles (TiO₂ NPs) using polysaccharide- (42 mg GE g) and phenolic-rich (78 mg GAE g) Pinus patula leaf extract. GC-MS and LC-MS fingerprinting identify terpenoids, flavonoids and phenolic glycosides acting as simultaneous reducing, capping and stabilizing agents.
View Article and Find Full Text PDF