98%
921
2 minutes
20
Recent epidemiological studies revealed a significant association between oral squamous cell carcinoma (OSCC) and , a major pathogen of periodontal disease. As a keystone pathogen of periodontitis, is known not only to damage local periodontal tissues, but also to evade the host immune system and eventually affect systemic health. However, its role in OSCC has yet to be defined. To explore the underlying effect of chronic infection on OSCC and to identify relevant biomarkers as promising targets for therapy and prevention, we established a novel model by exposing human immortalized oral epithelial cells (HIOECs) to at a low multiplicity of infection (MOI) for 5-23 weeks. The infected HIOECs were monitored for tumor biological alteration by proliferation, wound healing, transwell invasion, and gelatin zymography assays. Microarray and proteomic analyses were performed on HIOECs infected with for 15 weeks, and some selected data were validated by quantitative real-time PCR and (or) western blot on cells infected for 15 and 23 weeks. Persistent exposure to caused cell morphological changes, increased proliferation ability with higher S phase fraction in the cell cycle, and promoted cell migratory and invasive properties. In combining results of bioinformatics analyses and validation assays, tumor-related genes such as NNMT, FLI1, GAS6, lncRNA CCAT1, PDCD1LG2, and CD274 may be considered as the key regulators in tumor-like transformation in response to long-time exposure of . In addition, some useful clinical biomarkers and novel proteins were also presented. In conclusion, could promote tumorigenic properties of HIOECs, indicating that chronic infection may be considered as a potential risk factor for oral cancer. The key regulators detected from the present model might be used in monitoring the development of OSCC with chronic periodontal infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323389 | PMC |
http://dx.doi.org/10.3389/fcimb.2017.00057 | DOI Listing |
Environ Sci Technol
September 2025
State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
The potential of PM to cause lung cancer has been well established; however, evidence regarding which specific components are responsible remains limited. We investigated dissolved organic matter (DOM) in PM using high-resolution mass spectrometry (HRMS) and cellular DNA damage assays to elucidate molecular composition and sources of carcinogenic components. Our analysis revealed hundreds of genotoxic compounds, with condensed aromatic amines predominating in number, abundance, and contribution to overall genotoxicity.
View Article and Find Full Text PDFEnviron Health Prev Med
September 2025
Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan.
Background: Organic chemicals have been known to cause allergic diseases such as bronchial asthma and hypersensitivity pneumonitis; however, the possibility that they do not cause irreversible pulmonary fibrosis has not been considered. Polyacrylic acid (PAA), an organic chemical, has caused irreversible progressive pulmonary fibrosis in exposed workers, indicating its potential to induce pulmonary inflammation and fibrosis. Although intratracheal instillation studies are commonly used for evaluating lung pathology, traditional methods face challenges with chemical substances, particularly nanoparticles, which tend to aggregate in suspension and prevent uniform pulmonary distribution.
View Article and Find Full Text PDFChem Biol Interact
September 2025
Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK.
Humans are exposed to mixtures of chemical pollutants from various environmental sources at all stages of life. Understanding how these compounds are causally linked to population health effects is challenging because of the ethical limitations on studying controlled human exposures and the complexity of the many potential molecular mechanisms involved. We hypothesized that studies using a combination of in vivo murine stress reporter models together with non-targeted global transcriptome analysis will define the toxic mechanisms of complex chemical mixtures in a physiological context.
View Article and Find Full Text PDFAm J Perinatol
September 2025
Division of Neonatology, Nemours Children's Health at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States.
This study aimed to evaluate outcomes and resource utilization in neonates ≥35 weeks' gestation admitted to the neonatal intensive care unit (NICU) for persistent hypothermia, and to assess the incidence of early-onset sepsis (EOS) as well as the potential benefit of using the Kaiser Permanente EOS calculator for risk stratification.This retrospective study included 161 neonates born ≥35 weeks' gestation admitted to the NICU with persistent hypothermia (core temperature <36.5°C on three separate measurements) at a tertiary care hospital between April 2017 and June 2024.
View Article and Find Full Text PDFNeurochem Int
September 2025
Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key La
General anesthetics are essential in pediatric medicine, yet concerns persist regarding their potential neurotoxic effects on the developing brain. Whether transient synaptic disruptions caused by anesthesia lead to long-term deficits or are mitigated by endogenous plasticity remains unresolved. Here, we use longitudinal in vivo two-photon imaging in awake mice to investigate the structural and functional consequences of a single, clinically relevant exposure to sevoflurane at postnatal day 20.
View Article and Find Full Text PDF