Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are critical cytosolic sensors that trigger the production of interferons (IFNs). Though their recognition functions are well identified, their unique roles in the downstream signal transduction remain to be elucidated. Herein, we report the differential effect between grass carp () MDA5 (CiMDA5) and CiRIG-I on the production of various IFNs upon grass carp reovirus (GCRV) infection in kidney (CIK) cell line. In CIK cells, grass carp IFN1 (CiIFN1) and CiIFN3 are relatively highly expressed while CiIFN2 and CiIFN4 are relatively slightly expressed. Following GCRV infection, CiMDA5 induces a more extensive type I IFN response than CiRIG-I. Further investigation reveals that both CiMDA5 and CiRIG-I facilitate the expression and total phosphorylation levels of grass carp IFN regulatory factor (IRF) 3 (CiIRF3) and CiIRF7 upon GCRV infection or poly(I:C) stimulation. However, the difference is that CiRIG-I decreases the threonine phosphorylation level of CiIRF7. As a consequence, CiMDA5 enhances the heterodimerization of CiIRF3 and CiIRF7 and homodimerization of CiIRF7, whereas CiRIG-I facilitates the heterodimerization but attenuates homodimerization of CiIRF7. Moreover, the present study suggests that CiIRF3 and CiIRF7 heterodimers and CiIRF7 homodimers are able to induce more extensive IFN-I responses than CiIRF3 homodimers under GCRV infection. Additionally, CiMDA5 induces a stronger type II IFN (IFN-II) response against GCRV infection than CiRIG-I. Collectively, these results demonstrate that CiMDA5 plays a more potent role than CiRIG-I in IFN response to GCRV infection through differentially regulating the phosphorylation and dimerization of CiIRF3 and CiIRF7.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323377PMC
http://dx.doi.org/10.3389/fimmu.2017.00189DOI Listing

Publication Analysis

Top Keywords

gcrv infection
28
grass carp
16
ciirf3 ciirf7
16
induces stronger
8
phosphorylation dimerization
8
cik cells
8
cimda5 cirig-i
8
cimda5 induces
8
type ifn
8
ifn response
8

Similar Publications

Hnf4α integrates AIF and caspase 3/9 signaling to restrict single and coinfecting pathogens in teleosts.

PLoS Pathog

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.

Hepatocyte nuclear factor 4 alpha (Hnf4α), a conserved nuclear receptor central to vertebrate liver development and metabolic regulation, emerges here as a pivotal immune regulator in teleosts against complex infectious threats. While its metabolic roles are well-established, Hnf4α's function in bacterial infection, viral infection, and bacterial-viral coinfection-major challenges in global aquaculture-remained uncharacterized. This study reveals that teleost Hnf4α acts as a dual-functional immune checkpoint, essential for combating Aeromonas salmonicida, grass carp reovirus (GCRV), and their coinfection.

View Article and Find Full Text PDF

Sialic acid serves as a functional receptor for grass carp reovirus.

PLoS Pathog

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.

Grass carp reovirus (GCRV) causes hemorrhagic disease and substantial economic losses in the aquaculture of grass carp (Ctenopharyngodon idella), a commercially important fish species in China. Although viral entry depends on interactions between viral proteins and host receptors, the specific host molecules mediating this process have not been fully elucidated. Here, we identify cell surface sialic acid (SA) as a critical functional receptor for GCRV.

View Article and Find Full Text PDF

Grass carp reovirus type II (GCRV-II) has inflicted substantial economic damage to aquaculture industry due to highly contagious. To combat epidemic GCRV-II, we rational designed and constructed a multi-epitope nanoparticle vaccine (Pep-Fn) that consisted with cell penetrating peptide (CPP), epitope peptides, cell and grass carp-derived ferritin. Firstly, an anti-GCRV-II phage antibody library was constructed to screen antibodies for outer capsid proteins VP4 and VP35.

View Article and Find Full Text PDF

GCRV-II Triggers B and T Lymphocyte Apoptosis via Mitochondrial ROS Pathway.

Viruses

June 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 4300

Grass carp reovirus (GCRV), particularly the highly prevalent genotype II (GCRV-II), is known to infect peripheral blood leukocytes (PBLs) of grass carp. However, it is unclear whether GCRV-II can induce apoptosis in bystander lymphocytes within infected PBLs. Here, we have shown that GCRV-II infection induces apoptosis via the mitochondria-dependent caspase-3 pathway in infected PBLs.

View Article and Find Full Text PDF

Grass carp Trim47 restricts GCRV infection via SPRY domain-mediated autophagic degradation of nonstructural proteins and disruption of viral inclusion bodies.

Front Immunol

July 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.

Trim47, a TRIM C-VII subgroup protein characterized by a conserved SPRY domain, has been primarily studied for its ubiquitin-dependent roles in mammals. This study reports a paradigm-shifting finding in teleost immunology: grass carp Trim47 (gcTrim47) employs its SPRY domain to execute a novel, ubiquitin-independent antiviral pathway, selectively degrading GCRV-I nonstructural proteins NS38/NS80 via autophagy-mediated clearance. Unlike mammalian TRIMs, gcTrim47 antiviral activity is strictly dependent on its SPRY domain-devoid of RING/B-box domains critical for E3 ligase function-revealing an evolutionarily divergent mechanism where substrate-targeting specificity, not ubiquitination, drives viral replication factory (viral inclusion body, VIB) dismantling.

View Article and Find Full Text PDF