98%
921
2 minutes
20
Unlabelled: Dendrimers are monodisperse, regular, three-dimensional and small-scale macromolecules that can be used to release substances such as drugs, markers, and genetic material into the cells. Among these substances, nucleic acids such as plasmid DNA, antisense oligonucleotides (asODN), and small-interfering RNA (siRNA) are widely used as therapeutic macromolecules for the treatment and prevention of diverse diseases. Several studies were focused on the modification of dendrimers aiming to improve their affinity for nucleic acids and their ability to release nucleic acids inside the cells. However, high-generation dendrimers have been shown to provoke leaking of cell membranes due to high surface-charge density. Thereby, despite the high potential of dendrimers, cytotoxicity still represents a problem to be solved prior to future in-vitro and in-vivo applications. Many approaches have proposed the introduction of diverse functional groups in low generation dendrimers, to reduce potential surface-charge density, without a loss in the ability to interact with nucleic acids. Another issue that should be addressed is how to modulate the affinity of dendrimers for nucleic acids at different pH values to guarantee an adequate release of the cargo in endosomal vesicles. These questions may be addressed through the aid of computational chemistry and bioinformatics tools. Therefore, the present review aims to provide a detailed review focused on the several techniques that have been developed for the study and design of dendrimers as carriers for DNA or RNA.
Conclusions: As shown in the present review, molecular dynamics simulations can contribute by studying at theoretical level dendrimer-nucleic acid complexes at different conditions, such as pH or ionic strength. Therefore, different cell conditions such as the stay at the cytoplasm and the transit towards endosomes can be addressed. The influence of different terminal groups of dendrimers to DNA/RNA binding can also be evaluated using molecular simulations and especially, by using free energy methods, which aim to determine affinity of dendrimers for nucleic acids. The development of a library of terminal groups for dendrimers may represent a significant contribution to the design of new dendrimers. In this regard, protein-DNA interactions of structure databases have been analyzed as a way to identify suitable residues that can be incorporated as terminal groups of dendrimers. In summary, computational chemistry and biology tools will aim the design of new dendrimers for different kinds of cargo molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612823666170306093224 | DOI Listing |
Nanoscale Horiz
September 2025
Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Extracellular vesicles (EVs) have emerged as valuable sources for liquid biopsy in disease diagnostics, given their protein and nucleic acid cargoes (, miRNA, mRNA, glycoRNA) can serve as critical biomarkers. DNA nanotechnology, leveraging its inherent programmability, high specificity, and powerful signal amplification capability, offers a transformative approach for the bioanalysis of EVs. This review summarizes recent advances in DNA nanotechnology-based analytical methodologies for detecting EV-associated proteins and nucleic acids.
View Article and Find Full Text PDFMycoses
September 2025
Grupo Infección e Inmunidad, Facultad Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia.
Background: Malassezia genus includes lipodependent commensal yeasts of humans and animals' skin and mucous membranes. It can cause dermatological pathologies, and azoles are mainly used for treatment. However, in vitro susceptibility testing has shown decreased sensitivity to these antifungals.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye.
Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Inner Mongolia Medical University Affiliated Hospital, Hohhot, 010030, Inner Mongolia, China.
Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.
Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.