Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mRNA-destabilizing factor tristetraprolin (TTP) binds in a sequence-specific manner to the 3' untranslated regions of many proinflammatory mRNAs and recruits complexes of nucleases to promote rapid mRNA turnover. Mice lacking TTP develop a severe, spontaneous inflammatory syndrome characterized by the overexpression of tumor necrosis factor and other inflammatory mediators. However, TTP also employs the same mechanism to inhibit the expression of the potent anti-inflammatory cytokine interleukin 10 (IL-10). Perturbation of TTP function may therefore have mixed effects on inflammatory responses, either increasing or decreasing the expression of proinflammatory factors via direct or indirect mechanisms. We recently described a knock-in mouse strain in which the substitution of 2 amino acids of the endogenous TTP protein renders it constitutively active as an mRNA-destabilizing factor. Here we investigate the impact on the IL-10-mediated anti-inflammatory response. It is shown that the gain-of-function mutation of TTP impairs IL-10-mediated negative feedback control of macrophage function However, the effects of TTP mutation are uniformly anti-inflammatory despite the decreased expression of IL-10.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440651PMC
http://dx.doi.org/10.1128/MCB.00536-16DOI Listing

Publication Analysis

Top Keywords

gain-of-function mutation
8
negative feedback
8
feedback control
8
mrna-destabilizing factor
8
ttp
7
mutation tristetraprolin
4
tristetraprolin impairs
4
impairs negative
4
control macrophages
4
macrophages overwhelmingly
4

Similar Publications

Background: Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory disease caused by a gain-of-function mutation in the gene, which regulates inflammasome-mediated interleukin-1β (IL-1β) production. This leads to recurrent episodes of fever, rash, and arthritis, typically beginning in childhood.

Objective: To demonstrate the role of a missense mutation, c.

View Article and Find Full Text PDF

The TRPA1 channel has recently emerged as a critical target for pain relief since its antagonists target the beginning of the pain transduction pathway and, thus, are devoid of side effects such as sedation, dizziness, somnolence, or cognitive impairment. Despite this clinical significance, currently, no TRPA1 inhibitors suitable for therapeutic usage exist to target these channels. Since ancient times, natural products have been known to be a rich source of new drugs, useful therapeutic agents, as well as pharmacological tools.

View Article and Find Full Text PDF

Background: In autoimmune disease it is not understood how self-reactive B cells escape immune tolerance checkpoints to produce pathogenic autoantibodies.

Objective: In patients with demyelinating polyneuropathy caused by IgM autoantibodies against myelin associated glycoprotein (MAG) and the sulphated trisaccharide CD57, we aimed to test the hypothesis that B cells making the autoantibody escaped tolerance by acquiring lymphoma driver somatic mutations.

Methods: Deep single-cell RNA, DNA, flow cytometric and antibody specificity analysis of blood from three patients with MAG neuropathy.

View Article and Find Full Text PDF

A germline IκBα mutation outside the signal reception domain blocks nuclear translocation of NFκB1 and associates with autoinflammation-like features.

Ann Rheum Dis

September 2025

Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hannover, Germany. Electronic address:

Objectives: IκBα controls the canonical activation of NFκB. IκBα gain-of-function due to NFKBIA variants affecting the N-terminus of IκBα-especially residues 32 and 36-manifests with combined immunodeficiency. The role of NFKBIA variants affecting other IκBα domains has not been described.

View Article and Find Full Text PDF

WHIM syndrome is typically caused by C-terminal gain-of-function variants in , yet clinical heterogeneity suggests additional genetic modifiers. We investigated a family in which the 22-year-old proband harbored two heterozygous variants: a novel missense variant, c.1022C>A (p.

View Article and Find Full Text PDF