98%
921
2 minutes
20
Animals often experience periods of nutrient deprivation; however, the molecular mechanisms by which animals survive starvation remain largely unknown. In the nematode Caenorhabditis elegans, the nuclear receptor DAF-12 acts as a dietary and environmental sensor to orchestrate diverse aspects of development, metabolism, and reproduction. Recently, we have reported that DAF-12 together with co-repressor DIN-1S is required for starvation tolerance by promoting fat mobilization. In this report, we found that genetic inactivation of the DAF-12 signaling promoted the production of reactive oxygen species (ROS) during starvation. ROS mediated systemic necrosis, thereby inducing organismal death. The DAF-12/DIN-1S complex up-regulated the expression of antioxidant genes during starvation. The antioxidant enzyme GST-4 in turn suppressed ROS formation, thereby conferring worm survival. Our findings highlight the importance of antioxidant response in starvation tolerance and provide a novel insight into multiple organisms survive and adapt to periods of nutrient deprivation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322524 | PMC |
http://dx.doi.org/10.1038/srep43547 | DOI Listing |
G Ital Nefrol
August 2025
UO Nefrologia e Dialisi, Ospedale di Cassino, Italia.
SGLT-2 inhibitors are a relatively new class of antidiabetic drugs. They activate a transcriptional response similar to calorie restriction characterized by the up-regulation of sensors involved in nutrient deprivation, such as SIRT1 and AMPK, and the down-regulation of mTOR, a molecule involved in nutritional excess signaling. The purpose of this review is to illustrate the main pathways of nutrient deprivation: a complex mechanistic framework partly responsible for the cardio-renal benefits that makes these drugs unique.
View Article and Find Full Text PDFResearch (Wash D C)
September 2025
Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China.
The inhibition of dependent glutamine metabolism is an effective treatment for triple-negative breast cancer (TNBC) starvation, but it is limited by compensatory glycolysis and inadequate delivery efficiency. Herein, we construct a pH-responsive size/charge-reprogrammed micelle with hierarchical delivery characteristics for TNBC suppression with glutamine depletion and vessel blockade. It consists of a positively charged prodrug micelle chemically grafted with the glutamine transport inhibitor V9302 as the inner core layer, the neovascular disruptor CA4P adsorbed in the middle layer, and a pH-responsive peelable polymer as the outer shell.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2025
Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
The Wnt pathway is an evolutionarily conserved signaling cascade that regulates a wide range of fundamental cellular processes, including proliferation, differentiation, polarity, migration, metabolism, and survival. Due to its central regulatory roles, Wnt signaling is critically involved in the pathophysiology of numerous human diseases. Aberrant activation or insufficient inhibition of this pathway has been causally linked to cancer, degenerative disorders, metabolic syndromes, and developmental abnormalities.
View Article and Find Full Text PDFJ Exp Bot
September 2025
Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
Flooding-induced oxygen deprivation (anoxia) is a challenge to plant survival, necessitating adaptive mechanisms for recovery. This study investigates elemental redistribution during anoxia recovery using time-series elemental imaging to show changes in nutrient distribution. Focusing on the role of Cation/H⁺ Exchangers (CAXs) in Arabidopsis thaliana, we show how mutants deficient in specific CAX transporters (cax1 and the cax1-4 quadruple mutant; qKO) respond to anoxia and metal stress.
View Article and Find Full Text PDFLife Sci Alliance
November 2025
Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
Amino acid (AA) detection is fundamental for cellular function, balancing translation demands, biochemical pathways, and signaling networks. Although the GCN2 and mTORC1 pathways are known to regulate AA sensing, the global cellular response to AA deprivation remains poorly understood, particularly in non-transformed cells, which may exhibit distinct adaptive strategies compared with cancer cells. Here, we employed murine pluripotent embryonic stem (ES) cells as a model system to dissect responses to AA stress.
View Article and Find Full Text PDF