98%
921
2 minutes
20
Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2017.02.005 | DOI Listing |
FASEB J
September 2025
School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
Most animals experience abrupt developmental transitions involving major tissue remodeling, but the links with metabolic changes remain poorly understood. We examined ontogenetic changes in mitochondrial volume, oxidative capacity, oxygen consumption capacity, and anaerobic capacity across four organs (gut, liver, heart, and hindlimb muscle) in Xenopus laevis from metamorphosis to adulthood. These organs differ in the extent of developmental transformation.
View Article and Find Full Text PDFPhysiol Rep
September 2025
Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.
Human skeletal muscle comprises slow-twitch (type I) and fast-twitch (type II) fibers. Fiber type-specific analyses often require manual isolation of fibers, necessitating effective tissue preservation. While freeze-drying remains the standard, alternative preservation methods such as RNAlater and RNAlater-ICE are increasingly used.
View Article and Find Full Text PDFProc Biol Sci
September 2025
Department of Biology, Evolutionary Ecology and Infection Biology, Lund University, SE-223 62, Lund, Sweden.
Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.
View Article and Find Full Text PDFAm J Med Genet A
September 2025
Division of Clinical and Metabolic Genetics, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
Most complex V subunits are nuclear encoded and so far, were not found in association with recognized Mendelian disorders. ATP5PO is a candidate gene for complex V mitochondrial disease. It encodes the oligomycin sensitivity-conferring protein (OSCP), an essential component of the "stalk" region that links the F1 and F0 domains of the ATP synthase complex.
View Article and Find Full Text PDFMed Vet Entomol
September 2025
Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
Tick-borne rickettsiosis has posed a significant threat to Egypt, with various pathogenic Rickettsia species being reported. In this study, 134 ticks were collected from camels in Esna City, Luxor, Egypt and all were identified as Hyalomma dromedarii through both morphological and molecular techniques. Using specific primers targeting the citrate synthase (gltA), outer membrane protein A (ompA) and 17 kD antigen (17 kDa) genes, Rickettsia japonica was detected via conventional and nested PCR assays.
View Article and Find Full Text PDF