Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Muscle-invasive or metastatic bladder cancer (BCa) is associated with a very poor prognosis, and the underlying mechanism remains poorly understood. In this study, we demonstrate RASAL2, a RAS GTPase-activating protein (RAS GAP), acts as a tumor suppressor in BCa. First, RASAL2 was downregulated in BCa specimens and inversely correlated with pathological grades and clinical stages. Furthermore, we observed that RASAL2 could inhibit BCa stemness and epithelial-mesenchymal transition (EMT) based on our gain-of-function and loss-of-function experiments. Mechanistically, we found that mitogen-activated protein kinase/SOX2 signaling had a critical role for maintaining the stemness and mesenchymal properties of RASAL2-deficient BCa cells because inhibition of ERK activity or knockdown of SOX2 could reverse these phenotypes. Also, RASAL2 could inhibit BCa tumorigenesis and distant metastasis in vivo. Moreover, there was an inverse correlation between RASAL2 expression and the stemness/EMT status in subcutaneous xenograft and human BCa specimens. Taken together, our data indicate that RASAL2 is a tumor suppressor in BCa, and modulates cancer stemness and EMT for BCa recurrence and metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386500PMC
http://dx.doi.org/10.1038/cddis.2017.9DOI Listing

Publication Analysis

Top Keywords

bca
9
rasal2 ras
8
ras gtpase-activating
8
gtpase-activating protein
8
stemness epithelial-mesenchymal
8
epithelial-mesenchymal transition
8
bladder cancer
8
tumor suppressor
8
suppressor bca
8
bca specimens
8

Similar Publications

Background: Anxiety symptoms during pregnancy are a frequent mental health issue for expectant mothers and fathers. Research revealed that prenatal anxiety symptoms can impact parent-child bonding and child development. This study aims to investigate the prospective relationship between prenatal anxiety symptoms and general child development and whether it is mediated by parent-child bonding.

View Article and Find Full Text PDF

Bacoside A (BCA), a triterpenoid saponin isolated from Bacopa monnieri, exhibits diverse pharmacological properties, including neuroprotective, hepatoprotective, anti-stress, anti-inflammatory, and anti-ulcer effects. In the present study, BCA demonstrates pronounced anticancer activity against K562 chronic myelogenous leukemia (CML) cells by modulating autophagy-apoptosis dynamics. BCA induces dose- and time-dependent cytotoxicity in K562 cells while sparing normal human peripheral blood mononuclear cells (hPBMCs) and Vero cells, indicating therapeutic selectivity.

View Article and Find Full Text PDF

Short-Time Relaxation and Anomalous Diffusion in Dynamic Covalent Networks.

ACS Macro Lett

September 2025

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.

Introducing dynamic covalent chemistries into polymer networks allows access to complex linear viscoelasticity, owing to the reversible nature of the dynamic bonds. While this macroscopic mechanical behavior is influenced by the dynamic exchange of these chemistries, connecting the microscopic dynamics to the bulk properties is hindered by the time scale conventional techniques can observe. Here, light scattering passive microrheology is applied to probe short-time dynamics of dynamic covalent networks that consist of telechelic benzalcyanoacetate (BCA) Michael acceptors and thiol-functionalized cross-linkers.

View Article and Find Full Text PDF

As the range of allergens continues to expand and the food industry evolves, there is a growing need for more efficient, affordable, and comprehensive methods to monitor protein exposures. This study aimed to assess the concentrations of inhalable aerosols and soluble proteins (SP) in food manufacturing environments. Additionally, the study sought to optimize the extraction methods for determining SP across diverse food matrices.

View Article and Find Full Text PDF

Mevalonate Metabolic Reprogramming Drives Cisplatin Resistance in Bladder Cancer: Mechanisms and Therapeutic Targeting.

Protein Pept Lett

September 2025

Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou730000, Gansu, China.

Introduction: Dysregulation of mevalonate metabolism is a hallmark of tumorigenesis and therapy resistance across malignancies, though its role in bladder cancer remains unclear. This study aimed to elucidate its impact on prognosis and cisplatin chemosensitivity in bladder cancer.

Methods: Transcriptomic data and clinical information of bladder cancer patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF