98%
921
2 minutes
20
We reported previously that mouse embryonic stem cells do not have a functional IFN-based antiviral mechanism. The current study extends our investigation to the inflammatory response in mouse embryonic stem cells and mouse embryonic stem cell-differentiated cells. We demonstrate that LPS, TNF-α, and viral infection, all of which induce robust inflammatory responses in naturally differentiated cells, failed to activate NF-κB, the key transcription factor that mediates inflammatory responses, and were unable to induce the expression of inflammatory genes in mouse embryonic stem cells. Similar results were obtained in human embryonic stem cells. In addition to the inactive state of NF-κB, the deficiency in the inflammatory response in mouse embryonic stem cells is also attributed to the lack of functional receptors for LPS and TNF-α. In vitro differentiation can trigger the development of the inflammatory response mechanism, as indicated by the transition of NF-κB from its inactive to active state. However, a limited response to TNF-α and viral infection, but not to LPS, was observed in mouse embryonic stem cell-differentiated fibroblasts. We conclude that the inflammatory response mechanism is not active in mouse embryonic stem cells, and in vitro differentiation promotes only partial development of this mechanism. Together with our previous studies, the findings described in this article demonstrate that embryonic stem cells are fundamentally different from differentiated somatic cells in their innate immunity, which may have important implications in developmental biology, immunology, and embryonic stem cell-based regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321812 | PMC |
http://dx.doi.org/10.4049/jimmunol.1601068 | DOI Listing |
FASEB J
September 2025
Department of Plastic Surgery and Burn, Third XiangYa Hospital, Central South University, Changsha, Hunan, China.
Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.
View Article and Find Full Text PDFJ Pharm Pharmacol
September 2025
Department of Clinical Pharmacy, Hebei Medical University Third Hospital. No. 139 Ziqiang Road, Qiaoxi District, Shijiazhuang 050051, China.
Objectives: To investigate the antitumor effects of aucubin (AC) in non-small cell lung cancer (NSCLC) and uncover its plausible mechanism against lung cancer stem-like cells (LCSCs).
Methods: In vitro experiments included MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a reagent commonly used for cell viability assay) and colony formation assays to assess anti-proliferative effects on A549 and NCI-H1975 lung cancer cell lines, wound healing and Transwell invasion assays to evaluate inhibition of cell migration and invasion, tumorsphere-formation experiments to detect changes in NSCLC cell stemness, as well as Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses to measure the expression of LCSC markers (CD44, CD133, Oct4, and Nanog). In vivo experiments were conducted to observe the impact of AC on NSCLC metastasis and mouse survival rates.
J Cell Physiol
September 2025
Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.
View Article and Find Full Text PDFFEBS Open Bio
September 2025
Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
Primordial germ cells (PGCs) are the progenitor cells of sperm and eggs. Xenotransplantation of chicken PGCs can achieve germline transmission. However, there are still challenges in obtaining many PGCs from endangered birds in vitro.
View Article and Find Full Text PDFEMBO Rep
September 2025
Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany.
The flexibility of the spatio-temporal genome replication program during development and disease highlights the regulatory role of plastic epigenetic mechanisms over genetic determinants. Histone post-translational modifications are broadly implicated in replication timing control, yet the specific mechanisms through which individual histone marks influence replication dynamics, particularly in heterochromatin, remain unclear. Here, we demonstrate that H3K36me3 dynamically enriches at pericentromeric heterochromatin, composed of major satellite DNA repeats, prior to replication during mid S phase in mouse embryonic stem cells.
View Article and Find Full Text PDF