Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Roots anchor plants to the soil and are essential for a successful plant growth and adaptation to the environment. Research on the primary root in the plant model system Arabidopsis thaliana has yielded important advances in the molecular and cellular understanding of root growth and development. Several studies have uncovered how the hormones brassinosteroids (BRs) control cell cycle and differentiation programs through different cell-specific signaling pathways that are key for root growth and development. Currently, an important challenge resides in the translation of the current knowledge on Arabidopsis roots into agronomically valuable species to improve the agricultural production and to meet the food security goals of the millennium. In this chapter, we characterize the primary root apex of the cereal Sorghum bicolor (L. Moench) (sorghum), analyze the physiological response of sorghum roots to BRs, and examine the phylogeny of the BRASSINOSTEROID INSENSITIVE1-like receptor family in Arabidopsis and its orthologous genes in sorghum. Overall, we support the use of sorghum as a suitable crop model species for the study of BR signaling in root growth and development. The methods presented enable any laboratory worldwide to use sorghum primary roots as a favorite organ for the study of growth and development in crops.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6813-8_15DOI Listing

Publication Analysis

Top Keywords

growth development
16
primary root
12
root growth
12
sorghum bicolor
8
bicolor moench
8
model system
8
sorghum
7
growth
5
root
5
primary
4

Similar Publications

Role of Splenocytes on T Cells and Its Cytokine Network in Rheumatoid Arthritis.

Crit Rev Immunol

January 2025

Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.

Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are involved in the numerous types of tumors. The aim of this study is to comprehend the pathological mechanism of lncRNA CASC19 in ovarian cancer. CASC19, miR-761 and CBX2 expression in the samples was quantitatively detected by real-time quantitative polymerase chain reaction (RT-qPCR) reaction.

View Article and Find Full Text PDF

The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.

View Article and Find Full Text PDF

Nanomedicine-Mediated Therapies to Target Cancer Stem Cells: An Emerging Technology.

Crit Rev Ther Drug Carrier Syst

January 2025

Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.

Cancer stem cells (CSCs) are a category of cancer cells endowed with the ability to renew themselves, undergo unregulated growth, and exhibit a differentiation capacity akin to that of normal stem cells. CSCs have been linked with tumor metastasis and cancer recurrence due to their ability to elude immune monitoring. As a result, targeting CSCs specifically may improve the efficacy of cancer therapy.

View Article and Find Full Text PDF

Aberrant activation of fibroblast growth factor receptors (FGFRs) plays a critical role in tumorigenesis across multiple cancer types, driving the development of various FGFR inhibitors. Despite clinical advances, therapeutic efficacy remains limited by the emergence of drug resistance, primarily mediated by gatekeeper mutations in FGFRs. To overcome this challenge, we designed and synthesized a novel series of 7-(1-methyl-1-indole-3-yl)-5-pyrrolo[2,3-]pyrazine derivatives as covalent pan-FGFR inhibitors targeting both wild-type and gatekeeper mutants.

View Article and Find Full Text PDF