98%
921
2 minutes
20
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal fibrotic lung disease characterized by profound changes in stem cell differentiation, epithelial cell phenotypes and fibroblast proliferation. In our study, we found that miR-497-5p was significantly upregulated both during myofibroblast differentiation of lung resident mesenchymal stem cells (LR-MSCs) and in the lung tissues of a pulmonary fibrosis model. In addition, as determined by luciferase assays and Western blot analysis, reversion-inducing cysteine-rich protein with kazal motifs (Reck) was identified to be one of the target genes of miR-497-5p, and Reck could suppress the expression of matrix metalloproteinase-2 (Mmp2) and Mmp9, which could activate latent transforming growth factor-β1 (TGF-β1). To test the potential therapeutic significance of this miRNA, we modulated the expression of miR-497-5p in LR-MSCs and relevant animal models. The results demonstrated that upregulation of miR-497-5p could induce LR-MSCs to differentiate into myofibroblasts and promote pulmonary fibrogenesis, while inhibition of its expression could effectively retard these processes. In conclusion, our work supports that controlling pulmonary fibrogenesis via inhibition of miR-497-5p expression may provide a potential therapeutic strategy for IPF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241881 | PMC |
http://dx.doi.org/10.1038/srep40958 | DOI Listing |
Fibrotic lung diseases are associated with significant morbidity and mortality, and few therapies have been FDA-approved for patients with these conditions. Therefore, developing effective anti-fibrotic treatments represents an unmet clinical need. Plasminogen activator inhibitor 1 (PAI-1) is an attractive therapeutic target as its expression is up-regulated in the context of fibrotic lung disease, and a causal role for PAI-1 in lung fibrogenesis has been established in complementary animal models.
View Article and Find Full Text PDFCell Death Discov
September 2025
State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China. guo
Liver fibrosis represents an important pathological stage during chronic hepatopathy development, posing a significant threat to human health. Hepatic stellate cells (HSCs), an essential hepatic non-parenchymal cells, have a key effect on fibrogenesis, with their activation being a hallmark of liver fibrosis. MicroRNAs (miRNAs), the small non-coding RNAs, become the critical biomarkers and regulatory molecules in fibrotic processes.
View Article and Find Full Text PDFCytokine Growth Factor Rev
August 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India. Electronic address:
Cellular senescence and the formation of fibrotic scarring are critical in the progression of chronic illnesses, such as pulmonary fibrosis (PF). In this context, the transforming growth factor-beta (TGF-β) pathway represents a central driver in orchestrating the pathological cascade. TGF-β governs cellular activities such as differentiation, apoptosis, and extracellular matrix (ECM) remodeling as a pleiotropic cytokine.
View Article and Find Full Text PDFJ Clin Invest
August 2025
Division of Pulmonary and Critical Care Medicine, UCSF, San Francisco, United States of America.
Pulmonary fibrosis has been called a fibroproliferative disease but the functional importance of proliferating fibroblasts to pulmonary fibrosis has not been systematically examined. In response to alveolar injury, resting alveolar fibroblasts differentiate into fibrotic fibroblasts that express high levels of collagens. However, what role, if any, proliferation plays in the accumulation of fibrotic fibroblasts remains unclear.
View Article and Find Full Text PDFMol Med Rep
November 2025
Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.
Tissue fibrosis represents a pathological condition characterized by excessive accumulation of extracellular matrix (ECM) components. Although historically considered a byproduct of glycolysis, lactate has emerged as a key signaling molecule influencing diverse physiological and pathological processes, including fibrosis. Roles have emerged for lactate metabolism and lactylation, a novel post‑translational modification, in regulating fibroblast activation, ECM deposition and fibrotic progression.
View Article and Find Full Text PDF