98%
921
2 minutes
20
Exosomes derived from all nephron segments are present in human urine, where their functionality is incompletely understood. Most studies have focused on biomarker discovery rather than exosome function. Through sequencing we identified the miRNA repertoire of urinary exosomes from healthy volunteers; 276 mature miRNAs and 345 pre-miRNAs were identified (43%/7% of reads). Among the most abundant were members of the miR-10, miR-30 and let-7 families. Targets for the identified miRNAs were predicted using five different databases; genes encoding membrane transporters and their regulators were enriched, highlighting the possibility that these miRNAs could modulate key renal tubular functions in a paracrine manner. As proof of concept, cultured renal epithelial cells were exposed to urinary exosomes and cellular exosomal uptake was confirmed; thereafter, reduced levels of the potassium channel ROMK and kinases SGK1 and WNK1 were observed in a human collecting duct cell line, while SPAK was unaltered. In proximal tubular cells, mRNA levels of the amino acid transporter gene SLC38A2 were diminished and reflected in a significant decrement of its encoded protein SNAT2. Protein levels of the kinase SGK1 did not change. Thus we demonstrated a novel potential function for miRNA in urinary exosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240140 | PMC |
http://dx.doi.org/10.1038/srep40601 | DOI Listing |
Clin Transl Med
September 2025
Department of Cardiology, Guangzhou Red Cross Hospital of Ji-Nan University, Guangzhou, China.
Background: To investigate the role of self-peripheral blood mesenchymal stem cell (PBMSC)-derived exosomes (Exos) in enhancing renal sympathetic denervation (RD)-mediated heart regeneration following myocardial infarction (MI) in a porcine model.
Methods: Pigs (ejection fraction [EF] < 40% post-MI) were randomised to early sham RD or RD. At 2 weeks post-MI, autologous PBMSC-Exos were collected.
Clin Proteomics
August 2025
Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
Background: Small cell lung cancer (SCLC) is an aggressive malignancy with a poor prognosis. This study aimed to analyze the urinary exosomal proteome of SCLC patients to identify and validate potential non-invasive biomarkers for improving diagnosis, treatment response monitoring, and prognosis prediction.
Methods: We analyzed 90 urine samples from SCLC patients, divided into training (n = 38) and validation (n = 52) sets, including untreated, partial/complete remission, and relapsed groups.
J Proteome Res
September 2025
Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China.
Background: Podocytes injury drives proteinuria in diabetic kidney disease (DKD). Exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs) have demonstrated therapeutic potential in kidney diseases. However, the effects of hUCMSCs on podocyte injury and the underlying mechanisms in DKD remain unexplored.
View Article and Find Full Text PDFStem Cell Res Ther
August 2025
Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, People's Republic of China.
Complicated urinary tract infection (cUTI), characterized by recurrent episodes due to multidrug-resistant bacterial infections and biofilm formation, severely compromises patients' quality of life. Although uropathogenic Escherichia coli remains the primary pathogen, its ability to form biofilms and induce persistent inflammatory responses exacerbates urothelial damage, thereby aggravating the disease. Current antibiotic treatments face resistance issues and inability to promote tissue repair, emphasizing the need for innovative treatments.
View Article and Find Full Text PDFInt J Nanomedicine
July 2025
Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch, Taoyuan, Taiwan.
Introduction: MicroRNAs (miRNAs) are small, non-coding RNA molecules critical for cellular function, growth, and development. Recent advances in remote diagnostic technologies have highlighted the potential of urinary miRNAs as non-invasive biomarkers for disease monitoring. This study introduces a simple, rapid, and cost-effective reagent for exosomal miRNA extraction, designed for urine-based exosome screening.
View Article and Find Full Text PDF