Effects of six priority controlled phthalate esters with long-term low-dose integrated exposure on male reproductive toxicity in rats.

Food Chem Toxicol

Jiangsu Key Laboratory for Supramolecular Medicinal Material and Applications, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; Jiangsu Province Key Laboratory for Molecular and Medicinal Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, C

Published: March 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human beings are inevitably exposed to ubiquitous phthalate esters (PEs) surroundings. The purposes of this study were to investigate the effects of long-term low-dose exposure to the mixture of six priority controlled phthalate esters (MIXPs): dimethyl phthalate (DMP), diethyl phthalate (DEP), di(n-butyl) phthalate (DBP), butyl benzyl phthalate (BBP), di(2-ethyhexyl) phthalate (DEHP) and di-n-octyl phthalate (DNOP), on male rat reproductive system and further to explore the underlying mechanisms of the reproductive toxicity. The male rats were orally exposed to either sodium carboxymethyl cellulose as controls or MIXPs at three different low-doses by gavage for 15 weeks. Testosterone and luteinizing hormone (LH) in serum were analyzed, and pathological examinations were performed for toxicity evaluation. Steroidogenic proteins (StAR, P450scc, CYP17A1 and 17β-HSD), cell cycle and apoptosis-related proteins (p53, Chk1, Cdc2, CDK6, Bcl-2 and Bax) were measured for mechanisms exploration. MIXPs with long-term low-dose exposure could cause male reproductive toxicity to the rats, including the decrease of both serum and testicular testosterone, and the constructional damage of testis. These effects were related to down-regulated steroidogenic proteins, arresting cell cycle progression and promoting apoptosis in rat testicular cells. The results indicate that MIXPs with long-term low-dose exposure may pose male reproductive toxicity in human.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2017.01.011DOI Listing

Publication Analysis

Top Keywords

long-term low-dose
16
reproductive toxicity
16
phthalate esters
12
male reproductive
12
low-dose exposure
12
phthalate
9
priority controlled
8
controlled phthalate
8
exposure male
8
toxicity rats
8

Similar Publications

Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.

View Article and Find Full Text PDF

Background: Persistent chemotherapy-induced alopecia (pCIA) is a distressing side effect of antineoplastic agents, imposing significant psychological burdens on cancer survivors. Despite its impact, there are no standardized guidelines for diagnosis, prevention or management.

Objective: To establish consensus-based definitions, diagnostic criteria, grading systems and management recommendations for pCIA.

View Article and Find Full Text PDF

[Effect of Kamishoyosan on Primary Dysmenorrhea Pain].

Yakugaku Zasshi

September 2025

Kampo Research Laboratories, Pharmaceutical Company, Kracie, Ltd.

Dysmenorrhea refers to pathological symptoms that occur in association with menstruation during the menstrual period. Treatment options for dysmenorrhea include nonsteroidal anti-inflammatory drugs (NSAIDs) and low-dose estrogen-progestin combination pills. However, some patients do not respond to these treatments, and long-term use can lead to adverse reactions, raising additional problems.

View Article and Find Full Text PDF

Involvement of Ductal Reaction in Di-(2-ethylhexyl)-Phthalate-Caused Hepatic Fibrosis: Molecular Mechanisms and Potential Intervention Strategies.

Chem Biol Interact

September 2025

Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China. Electronic address:

Di-(2-ethylhexyl)-phthalate (DEHP) is a persistent environmental endocrine toxicant present in many products, and liver is the main target organ for DEHP metabolism. Long-term exposure to DEHP induces hepatic fibrosis, which is reversible in the early stages, while progresses to cirrhosis without timely intervention. Ductular reaction (DR) is a characteristic pathological change in hepatobiliary diseases, however, the involvement of DR in DEHP-caused hepatic fibrosis, the underlying molecular mechanisms, remail largely uninvestigated.

View Article and Find Full Text PDF