98%
921
2 minutes
20
Unlabelled: Biologic scaffolds are derived from mammalian tissues, which must be decellularized to remove cellular antigens that would otherwise incite an adverse immune response. Although widely used clinically, the optimum balance between cell removal and the disruption of matrix architecture and surface ligand landscape remains a considerable challenge. Here we describe the use of time of flight secondary ion mass spectroscopy (ToF-SIMS) to provide sensitive, molecular specific, localized analysis of detergent decellularized biologic scaffolds. We detected residual detergent fragments, specifically from Triton X-100, sodium deoxycholate and sodium dodecyl sulphate (SDS) in decellularized scaffolds; increased SDS concentrations from 0.1% to 1.0% increased both the intensity of SDS fragments and adverse cell outcomes. We also identified cellular remnants, by detecting phosphate and phosphocholine ions in PAA and CHAPS decellularized scaffolds. The present study demonstrates ToF-SIMS is not only a powerful tool for characterization of biologic scaffold surface molecular functionality, but also enables sensitive assessment of decellularization efficacy.
Statement Of Significance: We report here on the use of a highly sensitive analytical technique, time of flight secondary ion mass spectroscopy (ToF-SIMS) to characterize detergent decellularized scaffolds. ToF-SIMS detected cellular remnants and residual detergent fragments; increased intensity of the detergent fragments correlated with adverse cell matrix interactions. This study demonstrates the importance of maintaining a balance between cell removal and detergent disruption of matrix architecture and matrix surface ligand landscape. This study also demonstrates the power of ToF-SIMS for the characterization of decellularized scaffolds and capability for assessment of decellularization efficacy. Future use of biologic scaffolds in clinical tissue reconstruction will benefit from the fundamental results described in this work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5592694 | PMC |
http://dx.doi.org/10.1016/j.actbio.2016.12.033 | DOI Listing |
Methods Cell Biol
September 2025
Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa, Spain. Electronic address:
Human Dental Pulp Stem Cells (hDPSCs) represent a remarkable cell source for tissue engineering and regenerative medicine, offering significant potential for use in personalized medicine and autologous therapies. Decellularized extracellular matrix (ECM)-derived biological scaffolds show excellent properties for supporting cell delivery and growth in both in vitro and in vivo applications. These scaffolds provide essential biochemical cues that regulate cellular functions and offer a more accurate representation of the in vivo environment.
View Article and Find Full Text PDFBiomed Mater
September 2025
Extracorporeal Therapy Systems (EXTHER), Fraunhofer Institute for Cell Therapy and Immunology IZI, Schillingallee 68, 18057 Rostock, Rostock, 18057, GERMANY.
The global rise in chronic kidney disease necessitates innovative solutions for end-stage renal dis-ease that can help to overcome the limitations of the only available treatment options, transplanta-tion and dialysis. Tissue engineering presents a promising alternative, leveraging decellularized scaffolds to retain the extracellular matrix (ECM). However, optimizing methods for decellularization and recellularization remains a challenge.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Plastic Surgery and Burn, Third XiangYa Hospital, Central South University, Changsha, Hunan, China.
Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
September 2025
Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
In the current in vitro experiment, we fabricated and characterized placenta/platelet-rich plasma (PL/Pt) composite scaffolds and evaluated their effect on differentiating adipose stem cells (ASCs) into insulin-producing cells (IPCs) in vitro. The human placenta (PL) was decellularized (dPL), characterized, and digested in pepsin. PRP was extracted using a two-step centrifugation process and then freeze-dried.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Engineering, Boston College, 245 Beacon Street, Chestnut Hill, Massachusetts 02446, United States.
The advancement of cell therapy and cellular agriculture underscores the need for noninvasive, cost-effective methods for continuous monitoring of large-scale cell production. Bioreactors, designed to mimic physiological conditions to facilitate cell growth, require reliable quality control measures. This study investigates the potential of ultrasound technology to characterize cellular growth and decellularization in spinach scaffolds.
View Article and Find Full Text PDF