98%
921
2 minutes
20
Post-translational modifications (PTMs) of histones including acetylation, methylation, and ubiquitination are known to be involved in the epigenetic regulation of gene expression and thus can have an important role in tumorigenesis. A number of PTMs have been linked to pancreatic cancer and are frequently studied as potential targets for cancer therapy or diagnosis. The availability of biobank-stored, formalin-fixed, paraffin-embedded (FFPE) materials and advanced proteomic analytical tools make it possible to detect histone-related PTMs using predicted mass shifts caused by specific modification. It is, however, important to take into account the fact that formaldehyde (FA) present in the FFPE material is chemically reactive and may undergo condensation reactions, for example, with terminal amino groups and active CH functionalities of the studied proteins. As supported by the results of this study, the possibility to misinterpret such protein condensation product as endogenous PTMs should be taken into consideration in all proteomic analytical work involving FFPE materials. In this study, we used liquid chromatography-tandem mass spectrometry to assess preassumed modification of the lysine residues of histone proteins in FFPE or fresh-frozen (FF) tumor xenografts, derived from the human pancreatic cancer cell line, Capan-1. Here we report modifications with a defined mass shift of +14.016, +28.031, +42.011, or +114.043 Da, corresponding to apparent methylation, dimethylation, acetylation, or ubiquitination that were differentially distributed between the groups. The identified modifications were significantly more frequent in FFPE samples as compared with FF samples. Our results indicate that FFPE tissue processing may result in persistent chemical modifications of histones, which correspond in mass shift of important PTMs. Herein, we highlight the importance to investigate and report FA-formed modifications in FFPE-treated tissues, as well as the necessity of careful manual examination of observed modifications to eliminate false-positive PTMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/labinvest.2016.134 | DOI Listing |
Comput Assist Surg (Abingdon)
December 2025
Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
To develop a DeepSurv model for predicting survival in pancreatic adenocarcinoma patients, evaluating the benefit of surgical versus non-surgical treatment across different stages, including stage IV subcategories. Clinical data were extracted from the SEER database (2000-2020). Patients were randomly divided into a model-building group and an experimental group.
View Article and Find Full Text PDFCancer Immunol Res
September 2025
University of Pennsylvania, Philadelphia, PA, United States.
Pancreatic ductal adenocarcinoma (PDA) is defined by a myeloid-enriched microenvironment and has shown remarkable resistance to immune checkpoint blockade (e.g., PD-1 and CTLA-4).
View Article and Find Full Text PDFEndocr Relat Cancer
September 2025
Endocrinology, Diabetology and Medical Andrology Unit, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy.
Bone metastases (BMs) are rare and late event in patients with neuroendocrine tumors (NETs). The aim of our study was to investigate clinical presentation and outcome of BMs in a large cohort of patients with NETs. A retrospective study was performed at two referral centers of Northern Italy (IRCCS Humanitas Research Hospital in Milan and S.
View Article and Find Full Text PDFJ Biomed Opt
December 2025
University of Toronto, Department of Medical Biophysics, Temerty Faculty of Medicine, Toronto, Ontario, Canada.
Significance: Tumor tissues exhibit contrast with healthy tissue in circular degree of polarization (DOP) images via higher magnitude circular DOP values and increased helicity-flipping. This phenomenon may enable polarimetric tumor detection and surgical/procedural guidance applications.
Aim: Depolarization metrics have been shown to exhibit differential responses to healthy and cancer tissue, whereby tumor tissues tend to induce less depolarization; however, the understanding of this depolarization-based contrast remains limited.
Front Oncol
August 2025
Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
Introduction: Pancreatic adenocarcinoma (PAAD) is a highly aggressive malignancy characterized by a profoundly hypoxic tumor microenvironment, which fosters tumor progression and confers resistance to therapy The oncogenic regulator ID1has been implicated in PAAD malignancy, however, the mechanisms underlying hypoxia-induced stabilization of ID1 and the role of ubiquitin-mediated degradation remain poorly understood. Elucidating these pathways is essential for identifying novel therapeutic targets for PAAD.
Methods: In this study, we examined ID1 expression in PAAD tissues and cell lines using publicly available databases and in vitro models.