98%
921
2 minutes
20
High-fat diet (HFD)-induced obesity is associated with not only increased risk of metabolic and cardiovascular diseases, but cognitive deficit, depression and anxiety disorders. Obesity also leads to low-grade peripheral inflammation, which plays a major role in the development of metabolic alterations. Previous studies suggest that obesity-associated central inflammation may underlie the development of neuropsychiatric deficits, but further research is needed to clarify this relationship. We used 48 male C57BL/6J mice to investigate whether chronic consumption of a high-fat diet leads to increased expression of interleukin-1β (IL-1β) in the hippocampus, amygdala and frontal cortex. We also determined whether IL-1β expression in those brain regions correlates with changes in the Y-maze, open field, elevated zero maze and forced swim tests. After 16weeks on dietary treatments, HFD mice showed cognitive impairment on the Y-maze test, greater anxiety-like behavior during the open field and elevated zero maze tests, and increased depressive-like behavior in the forced swim test. Hippocampal and amygdalar expression of IL-1β were significantly higher in HFD mice than in control mice fed a standard diet (SD). Additionally, hippocampal GFAP and Iba1 immunoreactivity were increased in HFD mice when compared to SD controls. Cognitive performance negatively correlated with level of IL-1β in the hippocampus and amygdala whereas an observed increase in anxiety-like behavior was positively correlated with higher expression of IL-1β in the amygdala. However, we observed no association between depressive-like behavior and IL-1β expression in any of the brain regions investigated. Together our data provide evidence that mice fed a HFD exhibit cognitive deficits, anxiety and depressive-like behaviors. Our results also suggest that increased expression of IL-1β in the hippocampus and amygdala may be associated with the development of cognitive deficits and anxiety-like behavior, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2016.11.016 | DOI Listing |
Nat Metab
September 2025
Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA.
Cancer cells are exposed to diverse metabolites in the tumour microenvironment that are used to support the synthesis of nucleotides, amino acids and lipids needed for rapid cell proliferation. In some tumours, ketone bodies such as β-hydroxybutyrate (β-OHB), which are elevated in circulation under fasting conditions or low glycemic diets, can serve as an alternative fuel that is metabolized in the mitochondria to provide acetyl-CoA for the tricarboxylic acid (TCA) cycle. Here we identify a non-canonical route for β-OHB metabolism that bypasses the TCA cycle to generate cytosolic acetyl-CoA.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 220005, China. Electronic address:
Patients with diabetics usually exhibit disordered glucose and lipid metabolism, as well as disrupted intestinal microecology. Dietary adjustment is essential for controlling diabetes. This study evaluated the ameliorative effects of psyllium-derived medium-molecular-weight arabinoxylan (MMW-AX) on glycolipid biochemical indicators, pathological symptoms, and intestinal microbial diversity in mice with Type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFCleft Palate Craniofac J
September 2025
School and Hospital of Stomatology, Zunyi Medical University, Zunyi, China.
ObjectiveTo investigate the effects of zinc concentration on palatal development in fetal mice and its association with the aryl hydrocarbon receptor (AhR) signaling pathway.MethodsPregnant C57BL/6J mice were fed diets with varying zinc concentrations and randomly divided into a zinc-rich (ZR) group, a normal-zinc (NZ) group, and a zinc-deficient (ZD) group. Embryonic development was observed, and the expression levels of AhR signaling pathway-related factors were examined.
View Article and Find Full Text PDFClin Mol Hepatol
September 2025
Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
Background/aims: Endoplasmic reticulum (ER) stress in hepatocytes plays a causative role in alcohol-associated liver disease (ALD). The incomplete inhibition of ER stress by targeting canonical ER stress sensor proteins suggests the existence of noncanonical ER stress pathways in ALD pathology. This study aimed to delineate the role of RAB25 in ALD and its regulatory mechanism in noncanonical ER stress pathways.
View Article and Find Full Text PDFGenes Cells
September 2025
Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka, Japan.
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor abundantly expressed in the fatty liver of type 2 diabetic ob/ob mice. Herein, we investigated how PPARγ regulates the expression of the interferon alpha-inducible protein 27-like 2b (lfi27l2b) gene in the mouse liver. High expression of lfi27l2b was observed in the fatty liver of ob/ob mice, and the expression was further upregulated by PPARγ ligands; however, liver-specific Pparg knockout ameliorated this increase.
View Article and Find Full Text PDF