Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant microbial fuel cells are a recently developed technology that exploits photosynthesis in vascular plants by harnessing solar energy and generating electrical power. In this study, the model moss species , and other environmental samples of mosses, have been used to develop a non-vascular bryophyte microbial fuel cell (bryoMFC). A novel three-dimensional anodic matrix was successfully created and characterized and was further tested in a bryoMFC to determine the capacity of mosses to generate electrical power. The importance of anodophilic microorganisms in the bryoMFC was also determined. It was found that the non-sterile bryoMFCs operated with delivered over an order of magnitude higher peak power output (2.6 ± 0.6 µW m) than bryoMFCs kept in near-sterile conditions (0.2 ± 0.1 µW m). These results confirm the importance of the microbial populations for delivering electrons to the anode in a bryoMFC. When the bryoMFCs were operated with environmental samples of moss (non-sterile) the peak power output reached 6.7 ± 0.6 mW m. The bryoMFCs operated with environmental samples of moss were able to power a commercial radio receiver or an environmental sensor (LCD desktop weather station).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098967PMC
http://dx.doi.org/10.1098/rsos.160249DOI Listing

Publication Analysis

Top Keywords

microbial fuel
12
environmental samples
12
bryomfcs operated
12
bryophyte microbial
8
fuel cell
8
environmental sensor
8
electrical power
8
peak power
8
power output
8
operated environmental
8

Similar Publications

Iron oxide-mediated enhancement of extracellular electron transfer and symbiosis in consortium of electroactive bacteria and microalgae for wastewater treatment.

Water Res

August 2025

College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:

This study explores the role of α-Fe₂O₃ in improving extracellular electron transfer (EET) and symbiotic interactions between electroactive Shewanella oneidensis MR-1, its gene-deficient mutants (ΔmtrC, ΔomcA, and ΔcymA), and microalgae (Chlorella vulgaris). The iron oxide facilitates the efficient transfer of electrons generated by MR-1 to microalgal photosystem via the pathway of CymA-MtrC-OmcA to α-Fe₂O₃. This process enhances the removals of TOC, TN, and NH₄⁺-N in the MR-1 bacterial-algal consortium by 9.

View Article and Find Full Text PDF

Microbial-photoelectrochemical cell for the conversion of raw cellulose materials into electrical power and chemicals.

Biosens Bioelectron

August 2025

Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; The Resnick Sustainable Center for Catalysis, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; Nancy and Stephen Grand Technion Energy Program, Technion - Israel Instit

Exploiting biomass as a fuel source has attracted increasing attention over the last few decades. Combined biotic-abiotic systems can enhance conversion efficiency, but biotic reactions often require oxygen-free conditions, which are hindered by oxygen evolution at the photoanode. Herein, we develop a modular microbial-photoelectrochemical cell (MPEC) that facilitates the one-pot degradation and light-induced conversion of cellulosic material into electrical power and added-value compounds.

View Article and Find Full Text PDF

Single-chamber air-cathode microbial fuel cells (SA-MFCs) are an aeration-free, energy-positive technology for nitrogen removal, which is critical for environmental protection. However, existing studies on nitrogen removal mechanisms in SA-MFCs are conflicting, hindering further development. Focusing on removal mechanisms, this study comprehensively investigated three potential nitrogen removal pathways (ammonia volatilisation, electrochemical oxidation and biological conversion) using both conventional hand-made and 3D-printed air cathodes.

View Article and Find Full Text PDF

This article explores the association between salivary uric acid (UA) and periodontitis, systematically analyzing its dual roles and research progress. Studies indicate that UA acts as a primary antioxidant in saliva under physiological conditions (accounting for 70%), protecting periodontal tissues by scavenging reactive oxygen species. However, when gum disease becomes severe, UA can switch roles and fuel inflammation, worsening tissue damage.

View Article and Find Full Text PDF

This study investigates microbial fuel cell (MFC) performance through the modification of with gold nanoparticles (AuNPs) and polypyrrole (PPy). The yeast/AuNP-modified electrodes generated the highest median current of 2.57 nA, significantly outperforming the yeast/PPy-modified (0.

View Article and Find Full Text PDF