Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigates microbial fuel cell (MFC) performance through the modification of with gold nanoparticles (AuNPs) and polypyrrole (PPy). The yeast/AuNP-modified electrodes generated the highest median current of 2.57 nA, significantly outperforming the yeast/PPy-modified (0.82 nA) electrodes. Power density measurements further confirmed the superior performance of the yeast/AuNP-modified electrodes, showcasing a notable improvement in current densities and power outputs. Yeast/AuNP-modified graphite electrodes produced a higher power density of 22.8 mW/m, while exhibiting a lower current density compared to electrodes modified solely with yeast, which achieved a power density of 5.7 mW/m. These findings highlight the potential of AuNPs in significantly enhancing the electrochemical performance of yeast-based MFCs, providing a promising approach for the development of more efficient bioelectrochemical systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388726PMC
http://dx.doi.org/10.3390/microorganisms13081938DOI Listing

Publication Analysis

Top Keywords

power density
12
microbial fuel
8
yeast/aunp-modified electrodes
8
electrodes
5
enhancing electron
4
electron transfer
4
transfer efficiency
4
efficiency microbial
4
fuel cells
4
cells gold
4

Similar Publications

Narrow electrochemical windows and high reactivity of aqueous solutions remain critical bottlenecks for the practical application of aqueous batteries. However, the mechanisms for tuning microscopic reactivity of HO molecules in aqueous electrolytes remain elusive. This study employs six ether molecules with distinct structures and solvation powers to regulate the microstructure of aqueous solutions.

View Article and Find Full Text PDF

Narrow-linewidth lasers are essential for coherent optical applications, including communications, metrology, and sensing. Although compact semiconductor lasers with narrow linewidths have been demonstrated, achieving high spectral purity generally necessitates passive external cavities based on photonic integrated circuits. This study presents a theoretical and experimental demonstration of a monolithic optical injection locking topological interface state extended (MOIL-TISE) laser.

View Article and Find Full Text PDF

To overcome the potential issue of active site blockage by surfactants in colloidal synthesis, alternative synthetic approaches must be explored. In this study, we investigated both solvent-free and colloidal thermolysis routes to synthesize nickel sulfides (NiS and NiS) using sulfur-based Ni complexes, [Ni(SCO(CH))] (Ni-Xan) and [Ni(SCN(CH))] (Ni-DTC) as precursors. The solvent-free decomposition of these complexes produced ligand-free NiS and NiS in the absence or presence of triphenylphosphine (TPP), respectively.

View Article and Find Full Text PDF

Core-shell electrodes provide a potential and innovative approach for significantly enhancing the performance and capacity of supercapacitors (SCs) by combining two distinct materials. The capabilities of these advanced electrodes surpass those of conventional single electrodes. Specifically, these exhibit better energy storage, higher power density, and improved overall performance.

View Article and Find Full Text PDF

Solar-Enhanced Blue Energy Conversion via Photo-electric/thermal in GO/MoS/CNC Nanofluidic Membranes.

Small

September 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.

In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.

View Article and Find Full Text PDF