98%
921
2 minutes
20
Imperfections in integrated photonics manufacturing have a detrimental effect on the maximal achievable visibility in interferometric architectures. These limits have profound implications for further technological developments in photonics and in particular for quantum photonic technologies. Active optimization approaches, together with reconfigurable photonics, have been proposed as a solution to overcome this. In this Letter, we demonstrate an ultrahigh (>60 dB) extinction ratio in a silicon photonic device consisting of cascaded Mach-Zehnder interferometers, in which additional interferometers function as variable beamsplitters. The imperfections of fabricated beamsplitters are compensated using an automated progressive optimization algorithm with no requirement for pre-calibration. This work shows the possibility of integrating and accurately controlling linear-optical components for large-scale quantum information processing and other applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.41.005318 | DOI Listing |
Chemistry
September 2025
Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Würzburg, 97074, Germany.
Photosensitization has emerged as a versatile tool to facilitate access to excited states under mild conditions, allowing for efficient and selective photochemical transformations. Herein, we report a very simple molecule, coronene bisimide (CBI), as a potent visible-light photosensitizer featuring a high extinction coefficient with a broadband absorption spanning from ultraviolet to green region of the visible spectrum, along with a long-lived triplet state generated via efficient intersystem crossing (ISC). Utilizing the triplet-triplet energy transfer (TTEnT) strategy, CBI catalyzes diverse reactions under green light irradiation.
View Article and Find Full Text PDFNanophotonics
August 2025
Wangzhijiang Innovation Center for Laser, Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
The high extinction ratio mode (de)multiplexer is a pivotal component in high capacity mode-division multiplexing data communication and nascent on-chip intermodal acousto-optic modulators. Up to now, high performance on-chip mode (de)multiplexers are still lacking for integrated AOMs on the lithium niobate-on-insulator platform. In this paper, we propose and demonstrate an innovative scheme to achieve high extinction ratio signal routing for acousto-optic modulation, by leveraging a two-mode (de)multiplexer in conjunction with a high- racetrack microring resonator.
View Article and Find Full Text PDFAnal Chim Acta
October 2025
Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN,
Background: We have developed a new class of dual polarity molecules for matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) capable of acquiring 5 μm pixel sizes with high sensitivity toward polar lipids and metabolites. Aminated cinnamic acid analogs (ACAAs) are vacuum stable, have high extinction coefficients at 355 nm, are highly sensitive to polar lipids, have low toxicity, and are affordable. Current molecules used for high spatial resolution MALDI IMS of polar lipids have shown great success, but are plagued with issues such as low sensitivity at high spatial resolution, vacuum instability, and/or high toxicity.
View Article and Find Full Text PDFGlob Chang Biol
August 2025
State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
Climate change affects biodiversity through multidimensional impacts, influencing not only shifts in habitat range but also changes in habitat quality. In this context, habitat area and bioclimatic velocity have become critical metrics for assessing species-specific vulnerabilities to climate change. Here, we assessed the extinction risk and exposure risk of giant pandas (Ailuropoda melanoleuca) based on habitat area and bioclimatic velocity, respectively, and examined the differences between these two risks to inform climate-adaptive conservation strategies.
View Article and Find Full Text PDFPrimates
August 2025
Centro de Biodiversidade, Instituto de Biociências, Universidade Federal do Mato Grosso, Cuiabá, Brazil.
Establishing clear, rationales for conservation actions is critical to optimizing the chances of rescuing threatened species worldwide. We propose a simple habitat suitability index, a trade-off between occupancy probability and extinction risk, to guide conservation actions for the blond capuchin monkey (Sapajus flavius), whose distribution spans the contrasting but adjacent Atlantic Forest and Caatinga phytogeographic domains of northeastern Brazil. Our objective was to create a map to spatially coordinated management options considering both domains under two divergent but plausible scenarios assuming contrasting conservation outcomes: (1) active conservation efforts, in which government agencies/communities agree to invest and participate in conservation actions; and (2) no intervention and no additional effort.
View Article and Find Full Text PDF