Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Some colorectal carcinoma (CRC) invades into vessels and has distal metastasis, largely attributable to the dissemination of tumor cells into circulation as circulating tumor cells (CTCs). Moreover, cancer stem cells (CSCs) within CTCs, which are termed as circulating tumor stem-like cells (CTSCs), are critical for formation of distal metastatic tumors. Although different cell surface markers have been used to characterize and isolate CTCs or CSCs in CRC, no good marker has been identified so far for CTSCs. Here, we show evidence that CD262+ CRC cells appeared to be highly enriched for CTSCs in CRC. CD262+ CRC cells formed more tumor spheres in culture, exhibited higher chemo-resistance, had higher ratio of developing tumors after serial adoptive transplantation in nude mice, and had higher frequency of developing distal metastatic tumor, compared to traditional CD133+ or CD44+ CRC cells. Moreover, tumor cells were significantly more frequently detected in the circulation when CD262+ CRC cells were subcutaneously transplanted. Finally, we detected high CD262 levels in the stage IV CRC specimens, which were associated with poor prognosis of the patients. Together, these data suggest CD262+ may be a novel CTSC markers and selective elimination of CD262+ CRC cells may substantially improve the current CRC therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095316PMC

Publication Analysis

Top Keywords

crc cells
20
cd262+ crc
16
circulating tumor
12
tumor cells
12
cells
11
crc
10
stem cells
8
colorectal carcinoma
8
distal metastatic
8
tumor
7

Similar Publications

Ring finger protein 180 (RNF180) is an E3 ubiquitin-protein ligase that promotes polyubiquitination and degradation. We analyzed the roles and molecular mechanisms of RNF180 during the tumorigenesis and progression of colorectal cancer (CRC) through bioinformatics analysis, in vivo and vitro experiments. RNF180 overexpression was observed in CRC, and positively associated with T, N and TNM staging or differentiation.

View Article and Find Full Text PDF

Neuro-Immuno-Stromal Context in Colorectal Cancer: An Enteric Glial Cell-Driven Prognostic Model via Machine Learning Predicts Survival, Recurrence, and Therapy Response.

Exp Cell Res

September 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China. Electronic address:

Background: Enteric glial cells (EGCs) have been implicated in colorectal cancer (CRC) progression. This study aimed to develop and validate a prognostic model integrating EGC- and CRC-associated gene expression to predict patient survival, recurrence, metastasis, and therapy response.

Methods: Bulk and single-cell RNA sequencing data were analyzed, and a machine learning-based model was constructed using the RSF random forest algorithm.

View Article and Find Full Text PDF

Unraveling the nexus in the neuro-neoplastic progression of colorectal cancer: Potential role of β2-adrenergic receptor (β2-AR).

J Adv Res

September 2025

Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar. Electronic address:

Background: Studies on the interaction of cancer cells with other cells (fibroblasts, endothelial cells, and immune cells) of the tumor microenvironment (TME) have led to the development of many novel targeted therapies. More recently, the notion that neuronal cells of the TME could impact various processes supporting cancer progression has gained momentum. Tumor-associated neurons release neurotransmitters into the TME that, in turn, bind to specific receptors on different target cells, supporting cancer progression.

View Article and Find Full Text PDF

A covalent inhibitor targeting Cys16 on RhoA in colorectal cancer.

Cell Chem Biol

September 2025

School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; Centre for Oncology and Im

RhoA is a key cancer driver and potential colorectal cancer (CRC) therapy target but remains undrugged clinically. Using activity-based protein profiling (ABPP) and mass spectrometry (MS), we identified CL16, a covalent inhibitor targeting the unique Cys16 on RhoA subfamily, which confers high specificity over other Rho family proteins. Cys16 is adjacent to the nucleotide-binding pocket and switch regions, which are critical for RhoA function.

View Article and Find Full Text PDF

Background: Dysregulation of polyamine synthesis has been observed in various cancer cell types. A novel approach to depriving cancer cells of polyamines involves the use of difluoromethylornithine (DFMO) to block polyamine biosynthesis in combination with AMXT 1501, a potent inhibitor of polyamine transport. Preclinical mouse tumor models showed that the combination of AMXT 1501 plus DFMO had strong antitumor activity, together with evidence of a stimulated immune response against tumors.

View Article and Find Full Text PDF