Peroxiredoxin 1-mediated activation of TLR4/NF-κB pathway contributes to neuroinflammatory injury in intracerebral hemorrhage.

Int Immunopharmacol

Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China. Electronic address:

Published: December 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The proinflammatory properties of extracellular peroxiredoxins (Prxs) via induction of Toll-like receptor 4 (TLR4) activation have been gradually revealed under diverse stress conditions, including cerebral ischemia but not hemorrhage. Prx1 is proposed to be a major hemorrhagic stress-inducible isoform of Prxs during acute and subacute phases of intracerebral hemorrhage (ICH). However, the potential of Prx1 in the neuroinflammatory injury after ICH remains unclear. This study investigated the proinflammatory effect and underlying mechanism of extracellular Prx1 in cultured murine macrophages and a collagenase-induced mouse ICH model. The current results show that incubation of exogenous Prx1 (0-50nM) with murine RAW264.7 macrophages resulted in increased expression of TLR4, nuclear translocation of nuclear factor κB (NF-κB) p65 and production of proinflammatory mediators (NO, TNF-a and IL-6) in a concentration-dependent manner. In addition, ICH induced murine neurological deficits, cerebral edema and neuropathological alterations, such as neuron injury, astrocyte and microglia/macrophage activation, and neutrophil and T lymphocyte invasion up to 72h after ICH. Moreover, ICH stimulated Prx1 expression and extracellular release, TLR4/NF-κB signaling activation, reflected by increases in TLR4 expression, extracellular signal-regulated kinase (ERK) 1/2 and NF-κB activation, and production of cytokines (TNF-α, IL-6 and IL-17). Taken together, these findings suggest that extracellular Prx1-mediated TLR4/NF-κB pathway activation probably contributes to neuroinflammatory injury after ICH, and thus blocking Prx1-TLR4 signaling might provide a novel anti-neuroinflammatory strategy with extended therapeutic window for hemorrhagic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2016.10.025DOI Listing

Publication Analysis

Top Keywords

neuroinflammatory injury
12
tlr4/nf-κb pathway
8
contributes neuroinflammatory
8
intracerebral hemorrhage
8
injury ich
8
expression extracellular
8
ich
7
activation
6
extracellular
5
prx1
5

Similar Publications

Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.

View Article and Find Full Text PDF

Background: Remote ischemic conditioning (RIC), a novel neuroprotective therapy, has broad potential for reducing the occurrence and recurrence of cerebrovascular events, yet its mechanisms are not incompletely understood. The aim of this study is to investigate whether RIC alleviates apoptosis, inflammation, and reperfusion injury in rat models of ischemic stroke by regulating the Elabela (ELA)-apelin-Apelin receptor (APJ) system.

Methods: We established a rat model of middle cerebral artery occlusion (MCAO) with ischemia-reperfusion injury, and RIC was administered twice daily for 3 days post-MCAO.

View Article and Find Full Text PDF

Mechanistic Insights and Translational Therapeutics of Neurovascular Unit Dysregulation in Vascular Cognitive Impairment.

J Integr Neurosci

August 2025

Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, 211166 Nanjing, Jiangsu, China.

Cognitive impairment represents a progressive neurodegenerative condition with severity ranging from mild cognitive impairment (MCI) to dementia and exerts significant burdens on both individuals and healthcare systems. Vascular cognitive impairment (VCI) represents a heterogeneous clinical continuum, spanning a spectrum from subcortical ischemic VCI (featuring small vessel disease, white matter lesions, and lacunar infarcts) to mixed dementia, where vascular and Alzheimer's-type pathologies coexist. While traditionally linked to macro- and microvascular dysfunction, the mechanisms underlying VCI remain complex.

View Article and Find Full Text PDF

Background: Germinal matrix hemorrhage (GMH) is a common complication of premature infants with lifelong neurological consequences. Inflammation-mediated blood-brain barrier (BBB) disruption has been implicated as a main mechanism of secondary brain injury after GMH. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in inflammation, yet its involvement in GMH pathophysiology remains unclear.

View Article and Find Full Text PDF

Objectives: Excessive neuroinflammatory responses represent a key pathological mechanism in cerebral small vessel disease (CSVD). Dl-3--butylphthalide (NBP), a compound previously demonstrated to possess anti-inflammatory properties in ischemic stroke, was investigated for its potential therapeutic effects in a rodent model of CSVD. This study aimed to elucidate the neuroprotective mechanisms of NBP in CSVD pathogenesis.

View Article and Find Full Text PDF