98%
921
2 minutes
20
Tyrosine sulfation is an important post-translational modification but remains difficult to detect in biological samples owing to its low stoichiometric abundance and the lack of effective enrichment methods. In the present study, weak anion exchange (WAX) is evaluated for the enrichment of sulfopeptides that have been modified via carbamylation to convert all primary amines to less basic carbamates. The decrease in basicity enhanced the binding of carbamylated sulfopeptides to WAX resin relative to nonsulfated peptides. Upon elution and electrospray ionization in the negative mode, ultraviolet photodissociation (UVPD) was applied for peptide sequencing. Application of the method to a tryptic digest of bovine coagulation factor V resulted in identification of sulfation on tyrosine 1513.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.6b02899 | DOI Listing |
J Colloid Interface Sci
September 2025
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. Electronic address:
Glycolipids are key structural and functional components of biological membranes, yet their interfacial hydration behavior remains poorly understood. Here, we use vibrational heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy to probe the molecular structure of the air-water interface formed by monolayers of ohmline, a glycolipid bearing a lactose headgroup and carrying no formal charge. Upon electrolyte addition, we observe a striking reorientation of interfacial water and a reversal of the HD-SFG signal, indicative of apparent surface charging by an otherwise neutral headgroup.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh.
This study quantitatively evaluated the adsorption performance of natural bentonite for removing three dye classes-cationic (Basic dye: BEZACRYL RED GRL), anionic (Reactive dye: AVITERA LIGHT RED SE), and non-ionic (Disperse dye: BEMACRON BLUE HP3R) from synthetic textile wastewater. Batch adsorption experiments were conducted under varying conditions of contact time (15-90 min), adsorbent dosage (20-60 g L⁻), pH (4 and 12), and temperature (25-100 °C), with dye concentrations quantified by UV-Vis spectroscopy. At a contact time of 30 min and room temperature (25 °C), maximum removal efficiencies reached 99.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.
View Article and Find Full Text PDFSmall
September 2025
School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China.
Covalent organic frameworks (COFs) exhibit outstanding structural tunability, clearly defined ion pathways, and remarkable thermal/chemical stabilities, rendering them highly promising candidates for applications in solid-state electrolytes. However, it remains a challenge to develop a versatile method to incorporate both ionic groups and electron-withdrawing units into a single framework for effectively improving the lithium-ion conductivity. Herein, a series of novel [3+3] defective COFs is successfully synthesized featuring active amine/aldehyde anchoring sites for subsequent post-modification, and regulates the ion conductivity through elaborately tuning the anionic/cationic groups and weak/strong electron-withdrawing units.
View Article and Find Full Text PDFAnal Sci
September 2025
Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China.
The accurate detection of trace perfluoroalkyl acids (PFAAs) in drinking water remains challenging due to nonspecific adsorption losses during pretreatment. This study systematically evaluated the adsorption behaviors of 11 PFAAs across five filtration membranes and four solid-phase extraction (SPE) sorbents to establish an optimized analytical protocol. Results demonstrated that glass fiber (GL) filters minimized PFAAs retention (94.
View Article and Find Full Text PDF