98%
921
2 minutes
20
Background: Making forecasts about biodiversity and giving support to policy relies increasingly on large collections of data held electronically, and on substantial computational capability and capacity to analyse, model, simulate and predict using such data. However, the physically distributed nature of data resources and of expertise in advanced analytical tools creates many challenges for the modern scientist. Across the wider biological sciences, presenting such capabilities on the Internet (as "Web services") and using scientific workflow systems to compose them for particular tasks is a practical way to carry out robust "in silico" science. However, use of this approach in biodiversity science and ecology has thus far been quite limited.
Results: BioVeL is a virtual laboratory for data analysis and modelling in biodiversity science and ecology, freely accessible via the Internet. BioVeL includes functions for accessing and analysing data through curated Web services; for performing complex in silico analysis through exposure of R programs, workflows, and batch processing functions; for on-line collaboration through sharing of workflows and workflow runs; for experiment documentation through reproducibility and repeatability; and for computational support via seamless connections to supporting computing infrastructures. We developed and improved more than 60 Web services with significant potential in many different kinds of data analysis and modelling tasks. We composed reusable workflows using these Web services, also incorporating R programs. Deploying these tools into an easy-to-use and accessible 'virtual laboratory', free via the Internet, we applied the workflows in several diverse case studies. We opened the virtual laboratory for public use and through a programme of external engagement we actively encouraged scientists and third party application and tool developers to try out the services and contribute to the activity.
Conclusions: Our work shows we can deliver an operational, scalable and flexible Internet-based virtual laboratory to meet new demands for data processing and analysis in biodiversity science and ecology. In particular, we have successfully integrated existing and popular tools and practices from different scientific disciplines to be used in biodiversity and ecological research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073428 | PMC |
http://dx.doi.org/10.1186/s12898-016-0103-y | DOI Listing |
Eye (Lond)
September 2025
Genetics Laboratory, Metropolitan South Clinical Laboratory, Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
Background: Inherited retinal dystrophies (IRDs) are a genetically heterogeneous group of conditions, with approximately 40% of cases remaining unresolved after initial genetic testing. This study aimed to assess the impact of a personalised genomic approach integrating whole-exome sequencing (WES) reanalysis, whole-genome sequencing (WGS), customised gene panels and functional assays to improve diagnostic yield in unresolved cases.
Subjects/methods: We retrospectively reviewed a cohort of 597 individuals with IRDs, including 525 probands and 72 affected relatives.
Int J Biol Macromol
September 2025
Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. Electronic address:
Group A Rotavirus (RVA) poses a significant health risk. Unfortunately, there are currently no the Food and Drug Administration (FDA) approved antiviral compounds available for treating RVA-induced diarrhea. The lectin-like domain of VP8* plays an important role in the RVA lifecycle.
View Article and Find Full Text PDFBioorg Chem
September 2025
State Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China;
3-Oxoacid CoA-transferase 1 (OXCT1) plays a crucial role in hepatocellular carcinoma (HCC) progression through its ketolytic and succinyltransferase activities. Despite its potential as a therapeutic target, no small molecules have been developed to inhibit the dual enzymatic activities of OXCT1 specifically. In this study, our structural analysis revealed that the active sites for both enzymatic functions of OXCT1 are located in the same pocket.
View Article and Find Full Text PDFEur J Med Chem
August 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, Anhui, PR China. Electronic address:
Cancer remains a leading global cause of mortality, with treatment efficacy often compromised by drug resistance, highlighting the urgent need for novel targeted therapies. The enzyme fructose-2,6-bisphosphatase 4 (PFKFB4) governs glycolytic flux by modulating fructose-2,6-bisphosphate (F2,6BP) levels. PFKFB4 overexpression has been observed in various cancers and correlates with tumor growth, aggressiveness, and poor prognosis.
View Article and Find Full Text PDFJ Refract Surg
September 2025
JENVIS Research, Jena, Germany.
Purpose: To analyze the difference in objective and subjective photic phenomena following virtual implantation of three different presbyopia-correcting diffractive intraocular lens (IOL) designs.
Methods: The study was conducted at JENVIS Research Germany. A prospective cross-over and double-masked trial design was used.