98%
921
2 minutes
20
Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study, we investigated two multivariate-based classification techniques, Random Forests (RF) and k-nearest neighbor (k-nn), for improved automated detection of AF from the ECG. We have compiled a new database from ECG data taken from existing sources. R-R intervals were then analyzed using four previously described R-R irregularity measurements: (1) the coefficient of sample entropy (CoSEn), (2) the coefficient of variance (CV), (3) root mean square of the successive differences (RMSSD), and (4) median absolute deviation (MAD). Using outputs from all four R-R irregularity measurements, RF and k-nn models were trained. RF classification improved AF detection over CoSEn with overall specificity of 80.1% vs. 98.3% and positive predictive value of 51.8% vs. 92.1% with a reduction in sensitivity, 97.6% vs. 92.8%. k-nn also improved specificity and PPV over CoSEn; however, the sensitivity of this approach was considerably reduced (68.0%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jelectrocard.2016.07.033 | DOI Listing |
ERJ Open Res
September 2025
School of Psychology, University of Waikato, Hamilton, New Zealand.
Background: While some research shows that dogs are able to detect lung cancer at above-chance levels using breath samples, the relative utility of other sample types has not been established. We evaluated the comparative utility of human breath and saliva samples for lung cancer detection using dogs.
Methods: Seven dogs assessed breath and saliva samples from 154 patients attending a general respiratory clinic.
Rev Cardiovasc Med
August 2025
Department of Cardiology, University Hospitals of Leicester NHS Trust, Glenfield Hospital, LE3 9QP Leicester, UK.
Adult congenital heart disease (ACHD) constitutes a heterogeneous and expanding patient cohort with distinctive diagnostic and management challenges. Conventional detection methods are ineffective at reflecting lesion heterogeneity and the variability in risk profiles. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL) models, has revolutionized the potential for improving diagnosis, risk stratification, and personalized care across the ACHD spectrum.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Mathematics and Computer Science, Yan'an University, Yan'an, Shaanxi, China.
To address the challenge of real-time kiwifruit detection in trellised orchards, this paper proposes YOLOv10-Kiwi, a lightweight detection model optimized for resource-constrained devices. First, a more compact network is developed by adjusting the scaling factors of the YOLOv10n architecture. Second, to further reduce model complexity, a novel C2fDualHet module is proposed by integrating two consecutive Heterogeneous Kernel Convolution (HetConv) layers as a replacement for the traditional Bottleneck structure.
View Article and Find Full Text PDFComput Methods Programs Biomed
August 2025
Zhengzhou University, School of Computer and Artificial Intelligence, Zhengzhou, 450001, China. Electronic address:
Background And Objective: The early detection of breast cancer plays a critical role in improving survival rates and facilitating precise medical interventions. Therefore, the automated identification of breast abnormalities becomes paramount, significantly enhancing the prospects of successful treatment outcomes. To address this imperative, our research leverages multiple modalities such as MRI, CT, and mammography to detect and screen for breast cancer.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDF