Comput Methods Programs Biomed
November 2023
Background And Objective: Quantitative measures extracted from ventricular fibrillation (VF) waveform reflect the metabolic state of the myocardium and are associated with survival outcome. The quality of delivered chest compressions during cardiopulmonary resuscitation are also linked with survival. The aim of this research is to explore the viability and effectiveness of a thoracic impedance (TI) based chest compression (CC) guidance system to control CC depth within individual subjects and influence VF waveform properties.
View Article and Find Full Text PDFMicrovascular haemodynamic alterations are associated with coronary artery disease (CAD). The conjunctival microcirculation can easily be assessed non-invasively. However, the microcirculation of the conjunctiva has not been previously explored in clinical algorithms aimed at identifying patients with CAD.
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2021
Background And Objective: Cloud computing has the ability to offload processing tasks to a remote computing resources. Presently, the majority of biomedical digital signal processing involves a ground-up approach by writing code in a variety of languages. This may reduce the time a researcher or health professional has to process data, while increasing the barrier to entry to those with little or no software development experience.
View Article and Find Full Text PDFElectrocardiographic imaging is an imaging modality that has been introduced recently to help in visualizing the electrical activity of the heart and consequently guide the ablation therapy for ventricular arrhythmias. One of the main challenges of this modality is that the electrocardiographic signals recorded at the torso surface are contaminated with noise from different sources. Low amplitude leads are more affected by noise due to their low peak-to-peak amplitude.
View Article and Find Full Text PDFPurpose: Congenital heart disease (CHD) is the most common live birth defect and a proportion of these patients have chronic hypoxia. Chronic hypoxia leads to secondary erythrocytosis resulting in microvascular dysfunction and increased thrombosis risk. The conjunctival microcirculation is easily accessible for imaging and quantitative assessment.
View Article and Find Full Text PDFMicrocirculatory dysfunction occurs early in cardiovascular disease (CVD) development. Acute myocardial infarction (MI) is a late consequence of CVD. The conjunctival microcirculation is readily-accessible for quantitative assessment and has not previously been studied in MI patients.
View Article and Find Full Text PDFBackground: Body surface potential mapping (BSPM) provides additional electrophysiological information that can be useful for the detection of cardiac diseases. Moreover, BSPMs are currently utilized in electrocardiographic imaging (ECGI) systems within clinical practice. Missing information due to noisy recordings, poor electrode contact is inevitable.
View Article and Find Full Text PDFPurpose: The conjunctival microcirculation is a readily-accessible vascular bed for quantitative haemodynamic assessment and has been studied previously using a digital charge-coupled device (CCD). Smartphone video imaging of the conjunctiva, and haemodynamic parameter quantification, represents a novel approach. We report the feasibility of smartphone video acquisition and subsequent haemodynamic measure quantification via semi-automated means.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
April 2019
Introduction: Unobtrusive metrics that can auto-assess performance during clinical procedures are of value. Three approaches to deriving wearable technology-based metrics are explored: (1) eye tracking, (2) psychophysiological measurements [e.g.
View Article and Find Full Text PDFBackground: The 12-lead Electrocardiogram (ECG) has been used to detect cardiac abnormalities in the same format for more than 70years. However, due to the complex nature of 12-lead ECG interpretation, there is a significant cognitive workload required from the interpreter. This complexity in ECG interpretation often leads to errors in diagnosis and subsequent treatment.
View Article and Find Full Text PDFJ Electrocardiol
August 2018
Background: In clinical practice, data archiving of resting 12-lead electrocardiograms (ECGs) is mainly achieved by storing a PDF report in the hospital electronic health record (EHR). When available, digital ECG source data (raw samples) are only retained within the ECG management system.
Objective: The widespread availability of the ECG source data would undoubtedly permit successive analysis and facilitate longitudinal studies, with both scientific and diagnostic benefits.
J Electrocardiol
November 2017
Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study, we investigated two multivariate-based classification techniques, Random Forests (RF) and k-nearest neighbor (k-nn), for improved automated detection of AF from the ECG. We have compiled a new database from ECG data taken from existing sources.
View Article and Find Full Text PDFIntroduction: The 12-lead Electrocardiogram (ECG) presents a plethora of information and demands extensive knowledge and a high cognitive workload to interpret. Whilst the ECG is an important clinical tool, it is frequently incorrectly interpreted. Even expert clinicians are known to impulsively provide a diagnosis based on their first impression and often miss co-abnormalities.
View Article and Find Full Text PDFIntroduction: Epicardial potentials (EPs) derived from the body surface potential map (BSPM) improve acute myocardial infarction (AMI) diagnosis. In this study, we compared EPs derived from the 80-lead BSPM using a standard thoracic volume conductor model (TVCM) with those derived using a patient-specific torso model (PSTM) based on body mass index (BMI).
Methods: Consecutive patients presenting to both the emergency department and pre-hospital coronary care unit between August 2009 and August 2011 with acute ischaemic-type chest pain at rest were enrolled.
Introduction: The CardioQuick Patch® (CQP) has been developed to assist operators in accurately positioning precordial electrodes during 12-lead electrocardiogram (ECG) acquisition. This study describes the CQP design and assesses the device in comparison to conventional electrode application.
Methods: Twenty ECG technicians were recruited and a total of 60 ECG acquisitions were performed on the same patient model over four phases: (1) all participants applied single electrodes to the patient; (2) all participants were then re-trained on electrode placement and on how to use the CQP; (3) participants were randomly divided into two groups, the standard group applied single electrodes and the CQP group used the CQP; (4) after a one day interval, the same participants returned to carry out the same procedure on the same patient (measuring intra-practitioner variability).
J Electrocardiol
November 2017
The 'spatial QRS-T angle' (SA) is frequently determined using linear lead transformation matrices that require the entire 12-lead electrocardiogram (ECG). While this approach is adequate when using 12-lead ECG data that is recorded in the resting supine position, it is not optimal in monitoring applications. This is because maintaining a good quality recording of the complete 12-lead ECG in monitoring applications is difficult.
View Article and Find Full Text PDFCrit Care Nurs Clin North Am
September 2016
In this article, the authors outline the key components behind the automated generation of the cardiac impulses and the effect these impulses have on cardiac myocytes. Also, a description of the key components of the normal cardiac conduction system is provided, including the sinoatrial node, the atrioventricular node, the His bundle, the bundle branches, and the Purkinje network. Finally, an outline of how each stage of the cardiac conduction system is represented on the electrocardiogram is described, allowing the reader of the electrocardiogram to translate background information about the normal cardiac conduction system to everyday clinical practice.
View Article and Find Full Text PDFBackground: Recently under the Connected Health initiative, researchers and small-medium engineering companies have developed Electrocardiogram (ECG) monitoring devices that incorporate non-standard limb electrode positions, which we have named the Central Einthoven (CE) configuration.
Objectives: The main objective of this study is to compare ECG signals recorded from the CE configuration with those recorded from the recommended Mason-Likar (ML) configuration.
Methods: This study involved extracting two different sets of ECG limb leads from each patient to compare the difference in the signals.
This study investigates the use of multivariate linear regression to estimate three bipolar ECG leads from the 12-lead ECG in order to improve P-wave signal strength. The study population consisted of body surface potential maps recorded from 229 healthy subjects. P-waves were then isolated and population based transformation weights developed.
View Article and Find Full Text PDFResearch has shown that the 'spatial QRS-T angle' (SA) and the 'spatial ventricular gradient' (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice.
View Article and Find Full Text PDFBackground: The electrocardiogram (ECG) is the most commonly used diagnostic procedure for assessing the cardiovascular system. The aim of this study was to compare ECG diagnostic skill among fellows of cardiology and of other internal medicine specialties (non-cardiology fellows).
Methods: A total of 2900 ECG interpretations were collected.
IEEE Trans Biomed Eng
February 2016
Goal: In this study, we report on a lead selection method that was developed to detect the optimal bipolar electrode placement for recording of the P-wave.
Methods: The study population consisted of 117 lead body surface potential maps recorded from 229 healthy subjects. The optimal bipolar lead was developed using the training set (172 subjects) then extracted from the testing dataset (57 subjects) and compared to other lead systems previously reported for improved recording of atrial activity.
J Biomed Inform
August 2015
Reablement is new paradigm to increase independence in the home amongst the ageing population. And it remains a challenge to design an optimal electronic system to streamline and integrate reablement into current healthcare infrastructure. Furthermore, given reablement requires collaboration with a range of organisations (including national healthcare institutions and community/voluntary service providers), such a system needs to be co-created with all stakeholders involved.
View Article and Find Full Text PDFComput Methods Programs Biomed
July 2014
Introduction: A usability test was employed to evaluate two medical software applications at an expert conference setting. One software application is a medical diagnostic tool (electrocardiogram [ECG] viewer) and the other is a medical research tool (electrode misplacement simulator [EMS]). These novel applications have yet to be adopted by the healthcare domain, thus, (1) we wanted to determine the potential user acceptance of these applications and (2) we wanted to determine the feasibility of evaluating medical diagnostic and medical research software at a conference setting as opposed to the conventional laboratory setting.
View Article and Find Full Text PDFIntroduction: The electrocardiogram (ECG) is a recording of the electrical activity of the heart. It is commonly used to non-invasively assess the cardiac activity of a patient. Since 1938, ECG data has been visualised as 12 scalar traces (known as the standard 12-lead ECG).
View Article and Find Full Text PDF