Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

C-type inactivation of potassium channels fine-tunes the electrical signaling in excitable cells through an internal timing mechanism that is mediated by a hydrogen bond network in the channels' selectively filter. Previously, we used nonsense suppression to highlight the role of the conserved Trp434-Asp447 indole hydrogen bond in Shaker potassium channels with a non-hydrogen bonding homologue of tryptophan, Ind (Pless et al., 2013). Here, molecular dynamics simulations indicate that the Trp434Ind hydrogen bonding partner, Asp447, unexpectedly 'flips out' towards the extracellular environment, allowing water to penetrate the space behind the selectivity filter while simultaneously reducing the local negative electrostatic charge. Additionally, a protein engineering approach is presented whereby split intein sequences are flanked by endoplasmic reticulum retention/retrieval motifs (ERret) are incorporated into the N- or C- termini of Shaker monomers or within sodium channels two-domain fragments. This system enabled stoichiometric control of Shaker monomers and the encoding of multiple amino acids within a channel tetramer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5092047PMC
http://dx.doi.org/10.7554/eLife.18976DOI Listing

Publication Analysis

Top Keywords

potassium channels
8
hydrogen bond
8
shaker monomers
8
atomic mutagenesis
4
mutagenesis ion
4
channels
4
ion channels
4
channels engineered
4
engineered stoichiometry
4
stoichiometry c-type
4

Similar Publications

Pleural effusions (PLEF) in pulmonary arterial hypertension (PAH), particularly in patients with isolated right heart failure, are associated with poor prognosis and increased mortality. This study investigates changes in alveolar fluid clearance (AFC) transporter expression in relation to lung fluid accumulation and PLEF formation during PAH progression, as well as the effects of terbutaline (TER) and riociguat (RIO) treatment. Using a monocrotaline (MCT)-induced pulmonary hypertension (PH) rat model, we performed a detailed molecular analysis of AFC transporter expression at different disease stages, both before and after PH development.

View Article and Find Full Text PDF

Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.

View Article and Find Full Text PDF

Voltage-dependence gating of ion channels underlies numerous physiological and pathophysiological processes, and disruption of normal voltage gating is the cause of many channelopathies. Here, long timescale atomistic simulations were performed to directly probe voltage-induced gating transitions of the big potassium (BK) channels, where the voltage sensor domain (VSD) movement has been suggested to be distinct from that of canonical Kv channels but remains poorly understood. Using a Core-MT construct without the gating ring, multiple voltage activation transitions were observed at 750 mV, allowing detailed analysis of the activated state of BK VSD and key mechanistic features.

View Article and Find Full Text PDF

Voltage-gated K channels of the Kv2 family coassemble with electrically silent KvS subunits in specific subpopulations of brain neurons, forming heteromeric Kv2/KvS channels with distinct functional properties. Little is known about the composition and function of Kv2 channels in spinal cord neurons, however. Here, we show that while Kv2.

View Article and Find Full Text PDF

Introduction: The α-adrenoceptor (αAR) is involved in the physiopathology of the central nervous system (CNS), but its function in the adult male rat locus coeruleus (LC) has not been fully studied. We aimed to characterize the role of the αAR in the regulation of the firing rate (FR) of LC neurons and to describe the signaling pathways involved.

Methods: We measured, through single-unit extracellular recordings of LC neurons from adult male rats were used to measure the effect of adrenergic agonists in the presence and absence of adrenergic antagonists or inhibitors of several signalling pathways.

View Article and Find Full Text PDF