Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Climate models predict shifts in the amount, frequency and seasonality of rainfall. Given close links between grassland productivity and rainfall, such changes are likely to have profound effects on the functioning of grassland ecosystems and modify species interactions. Here, we introduce a unique, new experimental platform - DRI-Grass (rought and oot Herbivore nteractions in a land) - that exposes a south-eastern Australian grassland to five rainfall regimes [Ambient (AMB), increased amount (IA, +50%), reduced amount (RA, -50%), reduced frequency (RF, single rainfall event every 21 days, with total amount unchanged) and summer drought (SD, 12-14 weeks without water, December-March)], and contrasting levels of root herbivory. Incorporation of a belowground herbivore (root-feeding scarabs) addition treatment allows novel investigation of ecological responses to the twin stresses of altered rainfall and root herbivory. We quantified effects of permanently installed rain shelters on microclimate by comparison with outside plots, identifying small shelter effects on air temperature (-0.19°C day, +0.26°C night), soil water content (SWC; -8%) and photosynthetically active radiation (PAR; -16%). Shelters were associated with modest increases in net primary productivity (NPP), particularly during the cool season. Rainfall treatments generated substantial differences in SWC, with the exception of IA; the latter is likely due to a combination of higher transpiration rates associated with greater plant biomass in IA and the low water-holding capacity of the well-drained, sandy soil. Growing season NPP was strongly reduced by SD, but did not respond to the other rainfall treatments. Addition of root herbivores did not affect plant biomass and there were no interactions between herbivory and rainfall treatments in the 1st year of study. Root herbivory did, however, induce foliar silicon-based defenses in and . Rapid recovery of NPP following resumption of watering in SD plots indicates high functional resilience at the site, and may reflect adaptation of the vegetation to historically high variability in rainfall, both within- and between years. DRI-Grass provides a unique platform for understanding how ecological interactions will be affected by changing rainfall regimes and, specifically, how belowground herbivory modifies grassland resistance and resilience to climate extremes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028386PMC
http://dx.doi.org/10.3389/fpls.2016.01373DOI Listing

Publication Analysis

Top Keywords

root herbivory
12
rainfall treatments
12
rainfall
10
experimental platform
8
rainfall regimes
8
plant biomass
8
grassland
5
herbivory
5
dri-grass experimental
4
platform addressing
4

Similar Publications

Plant roots are exposed to various organisms that significantly impact plant productivity. Plant-parasitic nematodes (PPNs) such as Meloidogyne spp. and Pratylenchus spp.

View Article and Find Full Text PDF

Many plants are defended from herbivory by costly insect mutualists. Understanding positive associations between plants and mutualists requires a whole-plant perspective including roots. We hypothesized that root surface area increases with mutualist activity (to a saturation threshold) and recent rainfall but that this relationship shifts when herbivores are excluded.

View Article and Find Full Text PDF

Suppression of Belowground Volatiles in Maize Depends on Cover Crop Legacy and Genotype.

J Chem Ecol

August 2025

Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.

Volatile organic compounds are important chemical signals involved in plant-insect interactions. In recent decades, volatiles have been used in many agricultural applications to help control crop pests, but fewer applications have been developed for belowground pests despite volatile signaling and olfactory cues being crucial for orientation and communication of belowground organisms. Volatile signals also depend heavily on soil characteristics which influence both production and diffusion of these volatile compounds.

View Article and Find Full Text PDF

The impact of shade on whole-plant carbon allocation in a dominant East African tree sapling.

AoB Plants

August 2025

Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, 1664 N Virginia St., Reno, NV 89557, United States.

Plasticity in resource allocation can be beneficial for plants under stress. In savannas, tree-grass competition forces tree saplings growing in the grass layer to compete for water, nutrients, and light. Savanna tree saplings are also vulnerable to fire and herbivory, which may favour investment in storage belowground to support regrowth aboveground.

View Article and Find Full Text PDF

Entomopathogenic nematodes (EPNs) are key biological control agents in agriculture, but their direct effects on plant metabolism and resistance to herbivory remain underexplored. By combining transcriptomic, metabolomic, and herbivore assays, this study aimed at providing a holistic description of maize root responses to EPNs and to assess their potential relevance for plant-herbivore interactions. EPNs triggered a dynamic shift in root metabolism, suggesting a reallocation of primary resources towards chemical defences.

View Article and Find Full Text PDF