Background: Climate change models predict changes in the amount, frequency and seasonality of precipitation events, all of which have the potential to affect the structure and function of grassland ecosystems. While previous studies have examined plant or herbivore responses to these perturbations, few have examined their interactions; even fewer have included belowground herbivores. Given the ecological, economic and biodiversity value of grasslands, and their importance globally for carbon storage and agriculture, this is an important knowledge gap.
View Article and Find Full Text PDFClimate models predict shifts in the amount, frequency and seasonality of rainfall. Given close links between grassland productivity and rainfall, such changes are likely to have profound effects on the functioning of grassland ecosystems and modify species interactions. Here, we introduce a unique, new experimental platform - DRI-Grass (rought and oot Herbivore nteractions in a land) - that exposes a south-eastern Australian grassland to five rainfall regimes [Ambient (AMB), increased amount (IA, +50%), reduced amount (RA, -50%), reduced frequency (RF, single rainfall event every 21 days, with total amount unchanged) and summer drought (SD, 12-14 weeks without water, December-March)], and contrasting levels of root herbivory.
View Article and Find Full Text PDFThe productivity of semiarid Australian grassland ecosystems is currently limited by water availability and may be impacted further by predicted changes in rainfall regimes associated with climate change. In this study, we established a rainfall manipulation experiment to determine the effects of reduced frequency (RF; 8 days between water events) and reduced magnitude (RM; 50% reduction in amount) of rainfall events on the physiology and above- and below-ground growth of five grassland plant species with differing traits. Native C4 grasses exhibited the highest productivity in well watered, control (Cont) conditions, as well as in RF and RM treatments.
View Article and Find Full Text PDF