Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Degeneration of elastic lamina and vascular calcification are common features of vascular pathology such as aortic aneurysms. We tested whether dual therapy with targeted nanoparticles (NPs) can remove mineral deposits (by delivery of a chelating agent, ethylene diamine tetraacetic acid (EDTA)) and restore elastic lamina (by delivery of a polyphenol, pentagalloyl glucose (PGG)) to reverse moderate aneurysm development. EDTA followed by PGG NP delivery led to reduction in macrophage recruitment, matrix metalloproteinase (MMP) activity, elastin degradation and calcification in the aorta as compared to delivery of control blank NPs. Such dual therapy restored vascular elastic lamina and improved vascular function as observed by improvement in circumferential strain. Therefore, dual targeted therapy may be an attractive option to remove mineral deposits and restore healthy arterial structures in moderately developed aneurysms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039337PMC
http://dx.doi.org/10.7150/thno.16547DOI Listing

Publication Analysis

Top Keywords

elastic lamina
12
vascular calcification
8
dual targeted
8
targeted therapy
8
dual therapy
8
remove mineral
8
mineral deposits
8
reversal vascular
4
calcification aneurysms
4
aneurysms rat
4

Similar Publications

Due to the poor regeneration ability of cartilage tissue, the design and fabrication of permanent hydrogel cartilage scaffolds with mechanical properties matching is still an urgent challenge. In this study, we propose an "inner swelling-outer restraint" strategy to construct Janus hydrogel for pressure-bearing cartilage replacement, which is inspired by the "Lamina-splendens" structure of cartilage. As a proof of concept, the poly(vinyl alcohol)/carboxymethyl cellulose sodium (PVA/CMCNa) layer is designed to capture more fluid by introducing negatively charged aggregates, while the macromolecular conformation of the PVA/MoS layer can be densified through wet annealing, thereby increasing the liquid permeation resistance of the PVA/CMCNa layer.

View Article and Find Full Text PDF

Throughout leaf development, cell expansion is dynamic and driven by the balance between local cell wall mechanical properties and the intracellular turgor pressure that overcomes the stiffness of the cell wall leading to plastic deformation. The epidermal pavement cells in most leaves begin development as small, polygonally shaped cells, but in mature leaves epidermal pavement cells are often shaped as highly lobed puzzle pieces. However, the developmental and biomechanical trajectories between these two end points have not before been fully characterized.

View Article and Find Full Text PDF

The adventitia of blood vessels is their structural interface with surrounding tissues and may also contribute importantly to atherogenesis. Adventitial vasa vasorum and lymphatic vessels provide sources and sinks of interstitial fluid and solutes and remodel in disease. We constructed a mathematical model to investigate how soluble disease mediators, including lipoproteins and cytokines, are transported through the artery wall in healthy and atherosclerotic conditions.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease with no effective pharmacological interventions. While single-cell transcriptomics has advanced our understanding of AAA, it lacks spatial context. Here, we employed Seq-Scope, an ultra-high-resolution spatial transcriptomic technology, to decipher the spatial landscape of angiotensin II-induced AAA in Apoe-/- mice.

View Article and Find Full Text PDF

Difficulty-aware coupled contour regression network with IoU loss for efficient IVUS delineation.

Artif Intell Med

November 2025

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China. Electronic address:

The lumen and external elastic lamina contour delineation is crucial for quantitative analyses of intravascular ultrasound (IVUS) images. However, the various artifacts in IVUS images pose substantial challenges for accurate delineation. Existing mask-based methods often produce anatomically implausible contours in artifact-affected images, while contour-based methods suffer from the over-smooth problem within the artifact regions.

View Article and Find Full Text PDF