Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease with no effective pharmacological interventions. While single-cell transcriptomics has advanced our understanding of AAA, it lacks spatial context. Here, we employed Seq-Scope, an ultra-high-resolution spatial transcriptomic technology, to decipher the spatial landscape of angiotensin II-induced AAA in Apoe-/- mice. Our analysis revealed the heterogeneity of macrophages, fibroblasts, and smooth muscle cells (SMCs), with specific responses in different layers of the AAA tissue. SMCs in the inner layers showed associations with Mgp-expressing fibroblasts and GPNMB-expressing macrophages, whereas the outer layers had different dominant cell types. Notably, GPNMB-expressing macrophages were concentrated near SMCs in regions of severe elastic lamina damage. Immunofluorescent staining confirmed their colocalization, and scRNA-seq reanalysis independently validated the presence of GPNMB-high macrophages in AAA tissues, highlighting their involvement in inflammation and tissue remodeling. Moreover, we discovered that macrophage-derived soluble GPNMB induces SMC phenotypic switching, reducing contractile markers while increasing cytokines and metalloproteinases. This effect was partly mediated by CD44 signaling. These findings suggest that GPNMB-high macrophages contribute to AAA development by driving SMC dysfunction. This study highlights the importance of high-resolution spatial transcriptomics in complementing single-cell transcriptomics, offering valuable insights into molecular and cellular responses in the AAA microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406718PMC
http://dx.doi.org/10.1172/jci.insight.190534DOI Listing

Publication Analysis

Top Keywords

spatial transcriptomics
8
abdominal aortic
8
aortic aneurysm
8
single-cell transcriptomics
8
gpnmb-expressing macrophages
8
gpnmb-high macrophages
8
aaa
7
macrophages
5
single-cell spatial
4
transcriptomics
4

Similar Publications

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

Background: Immunotherapy holds significant yet underexplored potential for low-grade glioma (LGG) treatment. We therefore interrogated the role of Fanconi Anemia Complementation Group C (FANCC) as a novel immune checkpoint regulator given its spatial correlation with tumor microenvironments and clinical associations with immunosuppressive markers.

Objectives: FANCC is implicated in various tumor progressions; its role in LGG remains unexplored.

View Article and Find Full Text PDF

Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.

View Article and Find Full Text PDF

Serous endometrial carcinoma (SEC) is one of the most lethal types of uterine cancer, responsible for about 40% of all endometrial cancer-related deaths. Cell state dynamics during the early stages of SEC remain largely unknown, thereby hindering early detection and treatment of this disease. Here, we provide a comprehensive census of cell types and their states for normal, predysplastic, and dysplastic endometrium in a genetic mouse model of SEC.

View Article and Find Full Text PDF