Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A wide range of waste biomass/waste wood feedstocks abundantly available at mine sites provide the opportunity to produce biochars for cost-effective improvement of mine tailings and contaminated land at metal mines. In the present study, soft- and hardwood biochars derived from pine and jarrah woods at high temperature (700 °C) were characterized for their physiochemical properties including chemical components, electrical conductivity, pH, zeta potential, cation-exchange capacity (CEC), alkalinity, BET surface area and surface morphology. Evaluating and comparing these characteristics with available data from the literature have affirmed the strong dictation of precursor type on the physiochemical properties of the biochars. The pine and jarrah wood feedstocks are mainly different in their proportions of cellulose, hemicellulose and lignin, resulting in biochars with heterogeneous physiochemical properties. The hardwood jarrah biochar exhibits much higher microporosity, alkalinity and electrostatic capacity than the softwood pine. Correlation analysis and principal component analysis also show a good correlation between CEC-BET-alkalinity, and alkalinity-ash content. These comprehensive characterization and analysis results on biochars' properties from feedstocks of hardwood (from forest land clearance at mine construction) and waste pine wood (from mining operations) will provide a good guide for tailoring biochar functionalities for remediating metal mine tailings. The relatively inert high-temperature biochars can be stored for a long term at mine closure after decades of operations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-016-9873-6DOI Listing

Publication Analysis

Top Keywords

physiochemical properties
12
high temperature
8
wood feedstocks
8
mine tailings
8
pine jarrah
8
biochars
6
mine
5
characterization hard-
4
hard- softwood
4
softwood biochars
4

Similar Publications

Evolution of cross-tolerance to metals in yeast.

Proc Natl Acad Sci U S A

September 2025

Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Organisms often face multiple selective pressures simultaneously (e.g., mine tailings with multiple heavy metal contaminants), yet we know little about when adaptation to one stressor provides cross-tolerance or cross-intolerance to other stressors.

View Article and Find Full Text PDF

Ethnic fermented foods represent a significant repository for discovering novel probiotic entities. These fermented foods, entrenched in indigenous practices, have conserved a distinct microbiota through generations. Exploration of these fermented foods could yield microbial consortia capable of transforming human health.

View Article and Find Full Text PDF

Effects of orange variety on the physiochemical properties of self-secretory extracellular vesicle and its application potential as nutrient-rich beverage.

Food Res Int

November 2025

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330200, China. Electronic address:

Plant-derived extracellular vesicles have presented great potential in drug and/or nutrition delivery, but it is still unclear whether the variety affects the physicochemical properties of plant derived extracellular vesicles. In this work, the extracellular vesicles from various oranges were first characterized, including navel orange juice (NOJ), green orange juice (GOJ), bingtang orange juice (BTOJ) and blood orange juice (BOJ). The results exhibited obvious distinctions of extracellular vesicles among different oranges, such as vesicle concentration, surface potential, lipid composition, protein content and so on.

View Article and Find Full Text PDF

The interactions between ethylcellulose (EC) and waxes in multicomponent oleogel systems are underexplored. This study investigated the structural, functional, and physiochemical properties of rice bran oil (RBO) oleogels structured with various ratios of EC and a binary wax blend (9:1 beeswax (BW): carnauba wax (CRW)), varied in 0.5 % w/w increments at a constant total gelator concentration of 4 % w/w.

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) have been identified as a promising therapeutic option for osteoarthritis, graft vs. host disease and cardiovascular diseases, among others. For widespread application of these therapies, robust and scaled manufacturing processes are required that reliably yield high amounts of high quality MSCs.

View Article and Find Full Text PDF