98%
921
2 minutes
20
TleD is a SAM (S-adenosyl-l-methionine)-dependent methyltransferase and acts as one of the key enzymes in the teleocidin B biosynthesis pathway. Besides methyl transferring, TleD also rearranges the geranyl and indole moieties of the precursor to form a six-membered ring. Moreover, it does not show homologies with any known terpenoid cyclases. In order to elucidate how such a remarkable reaction could be achieved, we determined the complex crystal structures of TleD and the cofactor analogue S-adenosyl-l-homocysteine with or without the substrate teleocidin A1. A domain-swapped pattern via an additional N-terminal α-helix is observed in TleD hexamers. Structural comparison and alignment shows that this additional N-terminal α-helix is the common feature of SAM methyltransferase-like cyclases TleD and SpnF. The residue Tyr anchors the additional N-terminal α-helix to a 'core SAM-MT fold' and is a key residue for catalytic activity. Molecular dynamics simulation results suggest that the dihedral angle C23-C24-C25-C26 of teleocidin A1 is preferred to 60-90° in the TleD and substrate complex structure, which tend to adopt a Re-face stereocenter at C25 position after reaction and is according to in vitro enzyme reaction experiments. Our results also demonstrate that methyl transfer can be a new chemical strategy for carbocation formation in the terpene cyclization, which is the key initial step.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BCJ20160695 | DOI Listing |
J Biol Chem
September 2025
Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. Electronic address:
Histomonas meleagridis is a parasitic protozoan which causes histomoniasis (blackhead disease) in a wide range of birds, including domesticated chickens and turkeys, representing a significant health problem in avian veterinary medicine. Despite being classified as an anaerobic parasite, H. meleagridis can survive transient exposure to oxygen while little is known about the mechanisms that allow this organism to cope with exposure to varying oxygen levels.
View Article and Find Full Text PDFEgypt Heart J
September 2025
Department of Medicine, Faculty of Medicine, Tbilisi State Medical University, Tbilisi, Georgia.
Background: ST-elevation myocardial infarction (STEMI) is a major cardiac event that requires rapid reperfusion therapy. The same reperfusion mechanism that minimizes infarct size and mortality may paradoxically exacerbate further cardiac damage-a condition known as reperfusion injury. Oxidative stress, calcium excess, mitochondrial malfunction, and programmed cell death mechanisms make myocardial dysfunction worse.
View Article and Find Full Text PDFMicroPubl Biol
August 2025
Faculty of Science, Yamagata University.
In yeast, mitochondrial fission is mediated by the dynamin-like GTPase Dnm1, which is recruited to the mitochondrial outer membrane by its receptor, Fis1. To investigate the spatial distribution of Fis1, we used the CRISPR-Cas9 system to insert the gene fragment encoding mNeonGreen into the gene for its N-terminal tagging. Fluorescence microscopy revealed that mNeonGreen-Fis1 appeared as discrete puncta on mitochondria, in addition to a diffuse signal.
View Article and Find Full Text PDFNeurocrit Care
September 2025
Department of Rehabilitation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Background: Traumatic brain injury (TBI) is a major life-threatening event. In addition to neurological deficits, it can lead to long-term impairments of cognitive function. The vagus nerve (VN) provides a direct communication conduit between the central nervous system and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the vagus nerve (VNS) shows efficacy in ameliorating pathology in neurodegenerative diseases.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
September 2025
Peptide Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
Conventional peptide synthesis involves multiple protection and deprotection steps, and typically relies on stoichiometric amounts of coupling reagents and additives. This makes the process cumbersome, and results in poor atom economy and hazardous waste generation. Therefore, direct peptide bond formation using unprotected amino acids is a promising alternative.
View Article and Find Full Text PDF