Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, a variety of biomimetic hydrogel scaffolds have been used in tissue engineering because hydrogels can provide reasonable soft-tissue-like environmental conditions for various cell responses. However, although hydrogels can provide an outstanding biofunctional platform, their poor mechanical stability and low processability have been obstacles for their usage as biomedical scaffolds. To overcome this limitation, we propose a simple and versatile method using 3D printing supplemented with a low-temperature working plate and coating process to reinforce the mechanical properties and various cellular activities by accommodating the poly(ε-caprolactone) (PCL). To determine the efficiency of the method, we used two typical hydrogels (alginate and collagen), which were deposited in a multi-layer configuration, and PCL as a coating agent. The scaffolds were evaluated in terms of various physical and cellular activities (metabolic activity and osteogenic activity). Throughout the experiments, significant increases in the tensile modulus (>6-fold), cell proliferation (>1.2-fold), and calcium deposition (>1.3-fold) were observed for the hydrogel/PCL scaffolds compared to those for pure hydrogel. Based on the experimental results, we can confirm that the proposed hydrogel scaffold can be a highly promising biomedical scaffold for application in tissue regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-6041/11/5/055002DOI Listing

Publication Analysis

Top Keywords

hydrogels provide
8
cellular activities
8
scaffolds
5
versatile design
4
design hydrogel-based
4
hydrogel-based scaffolds
4
scaffolds manipulated
4
manipulated pore
4
pore structure
4
structure hard-tissue
4

Similar Publications

Sustained Mg/Sr ion delivery from injectable silk fibroin hydrogels drives SCAP osteogenic differentiation.

iScience

September 2025

Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.

This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.

View Article and Find Full Text PDF

Urinary catheters: state of the art and future perspectives - a narrative review.

Mater Today Bio

October 2025

University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska Ulica 8, SI-2000, Maribor, Slovenia.

Catheter associated urinary tract infection (CAUTI) is the most frequent healthcare associated infection, arising from microbial adhesion to catheter surfaces, biofilm development, and the growing problem of antimicrobial resistance. Many publications have addressed CAUTI epidemiology, biofilm biology, or biomaterials for catheters in isolation, yet there is little literature that connects these areas into a coherent translational perspective. This review seeks to fill that gap by combining an overview of biofilm pathophysiology with recent advances in material based innovations for catheter design, including nanostructured and responsive coatings, sensor enabled systems, additive manufacturing, and three dimensional printing.

View Article and Find Full Text PDF

Unravelling the molecular network structure of biohybrid hydrogels.

Mater Today Bio

October 2025

Leibniz Institute of Polymer Research Dresden, Division Polymer Biomaterials Science, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.

Glycosaminoglycan-based biohybrid hydrogels represent a powerful class of cell-instructive materials with proven potential in tissue engineering and regenerative medicine. Their biomedical functionality relies on a nanoscale polymer network that standard microscopy techniques cannot resolve. Here, we introduce an advanced analytical approach that integrates transmission electron microscopy, X-ray scattering, and computer simulations to directly and quantitatively characterize the nanoscale molecular network structure of these hydrogels.

View Article and Find Full Text PDF

Diabetic wounds present persistent challenges due to impaired healing, recurrent infection, oxidative stress, and dysregulated glucose metabolism. Bioinspired polymeric microneedle (MN) patches have emerged as multifunctional platforms capable of penetrating the stratum corneum to deliver therapeutics directly into the dermis, enabling glucose regulation, antimicrobial action, reactive oxygen species (ROS) modulation, and proangiogenic stimulation. Recent experimental evidence has demonstrated that the integration of glucose oxidase-loaded porous metal-organic frameworks, photothermal nanomaterials, and antioxidant hydrogels within dissolvable MNs achieves synergistic bactericidal effects, accelerates collagen deposition, and enhances neovascularization in diabetic wound models.

View Article and Find Full Text PDF

Preparation, characterization, and application of a novel chestnut starch-based bigel as a fat substitute in bread.

Int J Biol Macromol

September 2025

College of Food Science, Northeast Agricultural University, Harbin, 150030, China; College of Food Science and Engineering, Jilin University, Changchun, 130062, China; Heilongjiang Province China-Mongolia-Russia Joint R&D Laboratory for Bio-processing and Equipment for Agricultural Products (Interna

This study developed a novel self-assembled bigel by combining a chestnut starch (CS) hydrogel with a γ-oryzanol/β-sitosterol (γ-ORY/β-SIT) oleogel. The influence of the hydrogel to oleogel ratio on the macro and micro structures, mechanical properties and thermal stability of the bigels was examined, and its potential as a healthier solid fat substitute was further explored. The results indicated that as the proportion of hydrogel increased (10 %-50 %), all bigels maintained a consistent semi-solid structure without any phase separation.

View Article and Find Full Text PDF