Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Asian cultivated rice consists of two subspecies: Oryza sativa subsp. indica and O. sativa subsp. japonica Despite the fact that indica rice accounts for over 70% of total rice production worldwide and is genetically much more diverse, a high-quality reference genome for indica rice has yet to be published. We conducted map-based sequencing of two indica rice lines, Zhenshan 97 (ZS97) and Minghui 63 (MH63), which represent the two major varietal groups of the indica subspecies and are the parents of an elite Chinese hybrid. The genome sequences were assembled into 237 (ZS97) and 181 (MH63) contigs, with an accuracy >99.99%, and covered 90.6% and 93.2% of their estimated genome sizes. Comparative analyses of these two indica genomes uncovered surprising structural differences, especially with respect to inversions, translocations, presence/absence variations, and segmental duplications. Approximately 42% of nontransposable element related genes were identical between the two genomes. Transcriptome analysis of three tissues showed that 1,059-2,217 more genes were expressed in the hybrid than in the parents and that the expressed genes in the hybrid were much more diverse due to their divergence between the parental genomes. The public availability of two high-quality reference genomes for the indica subspecies of rice will have large-ranging implications for plant biology and crop genetic improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024649PMC
http://dx.doi.org/10.1073/pnas.1611012113DOI Listing

Publication Analysis

Top Keywords

indica rice
16
reference genomes
8
indica
8
sativa subsp
8
high-quality reference
8
indica subspecies
8
rice
7
genomes
5
extensive sequence
4
sequence divergence
4

Similar Publications

Effects of Lactobacillus plantarum fermentation on the retrogradation behaviors, physicochemical properties and structure of rice starch.

Carbohydr Polym

November 2025

School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address:

Starch retrogradation critically compromises shelf stability in rice-based products. This study demonstrates Lactobacillus plantarum (LP) fermentation as an effective biological strategy to retard retrogradation in japonica (JRS), indica (IRS), and glutinous (GRS) rice starches. Controlled fermentation (0-48 h) followed by 4 °C storage (0-14 d) induced significant structural and functional modifications.

View Article and Find Full Text PDF

Abiotic stresses severely threaten global food security, underscoring the need for resilient crop varieties. We identified OsSPT38, a previously uncharacterized SUMO E3 ligase in rice, and discovered a rare gain-of-function mutation (Gly212Asp) that enhances both stress resilience and yield. This phenotype was validated in 18 additional independent mutants and by base editing in the elite indica cultivar Huanghuazhan.

View Article and Find Full Text PDF

Amino acid transporter OsAAP8 mediates rice tillering and height by regulating the transport of neutral amino acids.

Plant Physiol Biochem

August 2025

Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture Of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountain

Amino acids, which serve as the main source of organic nitrogen, are typically transported within plants via amino acid transporter proteins. In this research, we discovered haplotype variations in the promoter sequence of amino acid transporter OsAAP8 among rice germplasm resources. Notably, we observed that OsAAP8 expression was significantly elevated in indica rice varieties.

View Article and Find Full Text PDF

This study employed four rice varieties differing in amylose content: japonica rice A (JRA), japonica rice B (JRB), indica rice (IR), and glutinous rice (GR). Using tap water as the control, the impact of weak alkaline electrolyzed water (WAEW) on the gel formation and digestibility of rice was investigated. Results indicated that WAEW significantly enhanced the texture properties and gel strength of cooked rice.

View Article and Find Full Text PDF

Background: Tiller number is a critical component of rice yield, as it directly influences overall productivity. While upland rice varieties are well adapted to lowland environments and prove resilient to fluctuating water availability, their typically low tillering capacity limits their performance in lowland ecosystems where conditions are more conducive to achieving higher yields.

Results: To facilitate the marker-assisted selection (MAS) breeding of upland rice cultivars suitable for lowland conditions, we performed QTL-seq analysis using populations derived from a cross between a high-tillering lowland indica parent (PTT1) and a low-tillering upland tropical japonica line (NDCMP49).

View Article and Find Full Text PDF