Plant Physiol Biochem
August 2025
Amino acids, which serve as the main source of organic nitrogen, are typically transported within plants via amino acid transporter proteins. In this research, we discovered haplotype variations in the promoter sequence of amino acid transporter OsAAP8 among rice germplasm resources. Notably, we observed that OsAAP8 expression was significantly elevated in indica rice varieties.
View Article and Find Full Text PDFMaize-soybean intercropping is widely practised to improve land use efficiency, but shading from maize often limits soybean growth and productivity. Melatonin, a plant signaling molecule with antioxidant and growth-regulating properties, has shown potential in mitigating various abiotic stresses, including low light. This study investigated the efficacy of applying foliar melatonin (MT) to enhance shade tolerance and yield performance of soybean under intercropping.
View Article and Find Full Text PDFRice (N Y)
July 2025
This review synthesizes how amino acid (AA) metabolism regulates rice stress tolerance, growth and quality through stress protection and growth-modulating pathways, bridging mechanisms to field applications. Under abiotic stresses, rice accumulates specific AAs-notably proline (Pro), γ-aminobutyric acid (GABA), and branched-chain AAs (BCAAs)-as osmoprotectants and antioxidants, correlating strongly with stress tolerance. Genetic evidence establishes causality: overexpression of biosynthetic genes (e.
View Article and Find Full Text PDFPhysiol Plant
February 2024
Kam Sweet Rice is a high-quality local variety of Guizhou province in China, but most varieties have awns on lemma. In this study, we aimed to obtain awnless varieties of Kam Sweet Rice by blocking the awn development-related gene OsGAD1 using CRISPR/Cas9 technology. We determined that natural variations of the OsGAD1 triggered different lengths of awns of Kam Sweet Rice.
View Article and Find Full Text PDFClimate change has caused changes in environmental conditions, leading to both low temperature (LT) and high humidity (HH) stress on crops worldwide. Therefore, there is a growing need to enhance our understanding of the physiological and molecular mechanisms underlying LT and HH stress tolerance in cucumbers, given the significance of climate change. The findings of this study offer a comprehensive understanding of how the transcriptome and hormone profiles of cucumbers respond to LT and HH stress.
View Article and Find Full Text PDFVegetable production under plastic sheds severely threatens regional eco-sustainability anthropogenic activities (excessive use of agrochemicals, pesticides) and problems associated with replanting. Long-term successive cropping across growing seasons induces continuous cropping stress, whose effects manifest as diminished plant growth. Therefore, it is imperative that we develop environmentally sustainable approaches, such as replacing agrochemicals with vegetable waste like dry raw garlic stalk (DRGS) or use biofertilizers like arbuscular mycorrhizal fungi (AMF) (e.
View Article and Find Full Text PDFPurpose: Verticillium wilt is a destructive vascular disease in eggplants. The complex defensive mechanisms of eggplant against this disease are very limited.
Methods: Our work examined the bioactive properties of garlic allelochemical diallyl disulfide (DADS) as potential biostimulants for defense against V.
Int J Mol Sci
January 2022
Tomato spotted wilt virus impacts negatively on a wide range of economically important plants, especially tomatoes. When plants facing any pathogen attack or infection, increase the transcription level of plant genes that are produced pathogenesis-related (PR) proteins. The aim of this study is a genome-wide identification of PR-10 superfamily and comparative analysis of and gene functions against tomato responses to biotic stress (TSWV) to systemic resistance in tomato.
View Article and Find Full Text PDFPhotoperiod is dominant environmental factor that controls plant growth and development. Even though research on plants response to photoperiod is significant in agriculture, molecular mechanisms of garlic in response to photoperiod remain largely unknown. In the current investigation, 3 months old garlic plants were treated with long day (LD) and short day (SD) for 10 and 20 days after treatment (DAT).
View Article and Find Full Text PDFPhotoperiod and temperature are vital environmental factors that regulate plant developmental processes. However, the roles of these factors in garlic bulb enlargement are unclear. In this report, responses of garlic bulb morphology and physiology to combinations of photoperiod (light/dark: 10/14 h, 12/12 h, 14/10 h) and temperature (light/dark: 25/18 °C, 30/20 °C) were investigated.
View Article and Find Full Text PDFInt J Mol Sci
February 2020
The photoperiod marks a varied set of behaviors in plants, including bulbing. Bulbing is controlled by inner signals, which can be stimulated or subdued by the ecological environment. It had been broadly stated that phytohormones control the plant development, and they are considered to play a significant part in the bulb formation.
View Article and Find Full Text PDFPhotoperiod (light) and temperature as abiotic factors having significant impact on the garlic bulb morphology and quality. In various bulb plants including garlic, bulbing is affected by photoperiod, temperature, sowing date and the plant age. In this backdrop experiments were performed to understand the effect of different photoperiods (10 h/14 h, 12 h/12 h and 14 h/10 h (light/dark)), temperatures (25 °C/18 °C and 30 °C/20 °C (light/dark)), sowing dates (D: 1 August, D: 1 September and D: 1 October) and plant ages (A, A and A: 80, 60 and 40 days after planting) on garlic cultivars viz; G103, G024 and G2011-5.
View Article and Find Full Text PDFZinc finger-homeodomain (ZHD) proteins constitute a plant-specific transcription factor family that play important roles in plant growth, development, and stress responses. In this study, we investigated a total of 10, 17, and 31 gene members in the peach, , and apple genome, respectively. The phylogenetic tree divided the identified ZHD genes into 4 subfamilies based on their domain organization, gene structure, and motif distribution with minor variations.
View Article and Find Full Text PDF