98%
921
2 minutes
20
The effects of increasing concentrations of lead (Pb) on Pb accumulation, subcellular distribution, ultrastructure, photosynthetic characteristics, antioxidative enzyme activity, malondialdehyde content, and phytochelatin contents were investigated in Neyraudia reynaudiana seedlings after a 21-day exposure. A Pb analysis at the subcellular level showed that the majority of Pb in the roots was associated with the cell wall fraction, followed by the soluble fraction. In contrast, the majority of the Pb in the leaves was located in the soluble fraction based on transmission electron microscopy and energy dispersive X-ray analyses. Furthermore, high Pb concentrations adversely affected N. reynaudiana cellular structure. The changes in enzyme activity suggested that the antioxidant system plays an important role in eliminating or alleviating Pb toxicity, both in the roots and leaves of N. reynaudiana. Additionally, the phytochelatin contents in the roots and leaves differed significantly between Pb-spiked treatments and control plants. Our results provide strong evidence that cell walls restrict Pb uptake into the protoplasm and establish an important protective barrier. Subsequent vacuolar compartmentalization in leaves could isolate Pb from other substances in the cell and minimize Pb toxicity in other organelles over time. These results also demonstrated that the levels of antioxidant enzymes and phytochelatin in leaves and roots are correlated with Pb toxicity. These detoxification mechanisms promote Pb tolerance in N. reynaudiana.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-016-7362-1 | DOI Listing |
Biophys J
September 2025
Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
The interplay between subcellular adhesion dynamics and cellular-scale deformations under shear flow drives key physiological and pathological processes. While both bond kinetics and fluid-cell interactions have been extensively studied in rolling adhesion, how bond characteristics quantitatively determine cellular velocity distributions remains unclear. In this study, we systematically investigate how force-free bond kinetics and intrinsic mechanical properties govern rolling adhesion dynamics, using macroscopic velocity distributions as a reference.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2025
Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción, Chile. Electronic address:
The development of multifunctional fluorescent organic materials capable of selective ion detection, subcellular targeting, and logical operations is a burgeoning area in chemical biology and materials science. Herein, we report the design and development of a novel acylhydrazone based fluorescent ligand (HSN·Cl), which exhibits a distinct "turn-on" emission response toward Zn ions and a subsequent "turn-off" response in the presence of sulfide ions (S). The molecular design incorporates structural elements that facilitate the ESIPT feature, conferring the probe with unique photophysical properties.
View Article and Find Full Text PDFJ Pathol
September 2025
The North of England Bone and Soft Tissue Tumour Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China.
Selenium and boron can alleviate lead (Pb) toxicity in plants, but their stress resistance mechanisms in tobacco remain unclear. The aim of this study was to investigate the effects of Se/B application on lead-induced oxidative stress, subcellular distribution, cell wall properties, and Pb accumulation. Additionally, a comprehensive analysis of transcriptomics and metabolomics data was conducted.
View Article and Find Full Text PDFDiscov Nano
September 2025
Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.
View Article and Find Full Text PDF