Plant microbiomes are vital for the growth and health of their host. Tree-associated microbiomes are shaped by multiple factors, of which the host is one of the key determinants. Whether different host genotypes affect the structure and diversity of the tissue-associated microbiome and how specific taxa enriched in different tree tissues are not yet well illustrated.
View Article and Find Full Text PDFPhosphorus is a crucial nutrient for plant growth, primarily found as insoluble phosphates in soil. The impact of climate change on the phosphorus cycle, particularly through geochemical cycling in forest soils, is underexplored. To address this gap, we investigated soil phosphorus distribution across five elevation gradients in different forest types using the modified Hedley fractionation method and high-throughput sequencing to assess phosphorus-solubilizing microorganisms (PSMs).
View Article and Find Full Text PDFChinese fir forests play a significant role both economically and ecologically, contributing to soil and water conservation while also serving as an efficient timber-producing species that brings economic benefits. However, the issue of soil degradation due to continuous Chinese fir planting cannot be overlooked. Continuous planting leads to a decrease in soil nutrients, a reduction in microbial diversity, and changes in microbial community composition, which in turn affect the abundance of carbon and nitrogen cycle functional genes in Chinese fir forest soils.
View Article and Find Full Text PDFMonoculture plantations in China, characterized by the continuous cultivation of a single species, pose challenges to timber accumulation and understory biodiversity, raising concerns about sustainability. This study investigated the impact of continuous monoculture plantings of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.
View Article and Find Full Text PDFTo identify possible dominating processes involved in soil microbial community assembly, dissolved organic matter (DOM) and multi-nutrient cycling (MNC) interactions and contribute to understanding of climate change effects on these important cycles, we investigated the interaction of soil chemistry, DOM components and microbial communities in five vegetation zones - ranging from evergreen broad-leaved forest to alpine meadow - along an elevation gradient of 290-1960 m in the Wuyi Mountains, Fujian Province, China. Soil DOM composition and microbial community assembly were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and Illumina MiSeq high-throughput sequencing, respectively. Sloan's neutral model and the modified stochasticity ratio were used to infer community assembly processes.
View Article and Find Full Text PDFCharacterization of soil dissolved organic matter (DOM) and understanding of the interactions between soil microbial communities and DOM molecules along elevation gradients in alpine ecosystems are still limited. To unravel these interactions and how they change along alpine elevation gradients, we sampled topsoil in the Sygera Mountains (Tibet, China) at elevations between 3800 and 4600 m. The molecular characteristics of soil DOM were determined using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and soil microbial composition was identified by high-throughput sequencing.
View Article and Find Full Text PDFThe total dissolved organic matter (DOM) content of soil changes after vegetation transformation, but the diversity of the underlying chemical composition has not been explored in detail. Characterizing the molecular diversity of DOM and its fate enables a better understanding of the soil quality of monoculture forest plantations. This study characterized the chemodiversity of soil DOM, assessed the variation of the soil microbial community composition, and identified specific linkages between DOM molecules and microbial community composition in soil samples from a 100-year chronosequence of Chinese fir monoculture plantations.
View Article and Find Full Text PDFCadmium (Cd) is one of the most toxic environmental pollutants affecting the growth and reproduction of various plants. Analysis of the biological adaptation and tolerance mechanisms of the hyperaccumulator Erigeron annuus to Cd stress may help identify new plant species for phytoremediation and in optimizing the process. This study is to the first to analyze the molecular composition and diversity of dissolved organic matter (DOM) secreted by roots using FT-ICR MS, and multiple physiological and biochemical indexes of E.
View Article and Find Full Text PDFBMC Plant Biol
December 2020
Background: Under natural conditions, soil nutrients are heterogeneously distributed, and plants have developed adaptation strategies to efficiently forage patchily distributed nutrient. Most previous studies examined either patch strength or patch size separately and focused mainly on root morphological plasticity (increased root proliferation in nutrient-rich patch), thus the effects of both patch strength and size on morphological and physiological plasticity are not well understood. In this study, we examined the foraging strategy of Neyraudia reynaudiana (Kunth) Keng ex Hithc, a pioneer grass colonizing degraded sites, with respect to patch strength and size in heterogeneously distributed phosphorus (P), and how foraging patchily distributed P affects total plant biomass production.
View Article and Find Full Text PDFEnviron Sci Technol
June 2019
Plants used for phytoremediation of contaminated soil are often enriched in certain metals present in the soil. However, the role of the inherent metal content of the plants on their recycling by hydrothermal liquefaction (HTL) has not been considered in previous studies. The present study showed that Rhus chinensis plants grown in highly Pb-polluted soil can release inherent metals (such as Pb, K, Ca, Na, and Mg) into the HTL solution, further enhancing the production of formic and acetic acids and decreasing the yield of levulinic acid.
View Article and Find Full Text PDFSlow plant growth, low biomass, and low bioavailability of heavy metals in soil are important factors that limit remediation efficiencies. This study adopted a pot cultivation method to evaluate the phytoremediation efficiency of Neyraudia reynaudiana, planted in contaminated soil from a lead-zinc mining area. The soil was inoculated with earthworms (Eisenia fetida), and mixed with the chelating agent ethylenediaminetetraacetic acid (EDTA) one month after planting.
View Article and Find Full Text PDFEcotoxicol Environ Saf
August 2017
A greenhouse experiment was conducted to assay the bioaccumulation and tolerance characteristics of Rhus chinensis Mill. to lead (Pb). The effects of exposing R.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2017
In the present study, the effects of low-molecular-weight organic acids (OAs) on the toxicity of copper (Cu) to the earthworm Eisenia fetida (E. fetida) were investigated in a simulated soil solution. We exposed E.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2016
The effects of increasing concentrations of lead (Pb) on Pb accumulation, subcellular distribution, ultrastructure, photosynthetic characteristics, antioxidative enzyme activity, malondialdehyde content, and phytochelatin contents were investigated in Neyraudia reynaudiana seedlings after a 21-day exposure. A Pb analysis at the subcellular level showed that the majority of Pb in the roots was associated with the cell wall fraction, followed by the soluble fraction. In contrast, the majority of the Pb in the leaves was located in the soluble fraction based on transmission electron microscopy and energy dispersive X-ray analyses.
View Article and Find Full Text PDFWe used hydroponic experiments to examine the effects of different concentrations of lead (Pb) on the performance of the Pb-tolerable plant Conyza canadensis. In these experiments, most of the Pb was accumulated in the roots; there was very little Pb accumulated in stems and leaves. C.
View Article and Find Full Text PDFInt J Phytoremediation
October 2015
Experiments were conducted to examine the effects of different concentrations of Cd on the performance of the Cd accumulator Conyza canadensis. Cd accumulation in roots and leaves (roots>leaves) increased with increasing Cd concentration in soil. High Cd concentration inhibited plant growth, increased the membrane permeability of leaves, and caused a significant decline in plant height and chlorophyll [chlorophyll (Chl) a, Chl b, and total Chl] content.
View Article and Find Full Text PDFEnviron Toxicol Chem
October 2014
The acute and subacute toxicities of cadmium (Cd) to earthworm Eisenia fetida in the presence and absence of glyphosate were studied. Although Cd is highly toxic to E. fetida, the presence of glyphosate markedly reduced the acute toxicity of Cd to earthworm; both the mortality rate of the earthworms and the accumulation of Cd decreased with the increase of the glyphosate/Cd molar ratio.
View Article and Find Full Text PDFEnviron Pollut
September 2013
Glyphosate (GPS) and copper (Cu) are common pollutants in soils, and commonly co-exist. Due to the chemical structure of GPS, it can form complexes of heavy metals and interface their bioavailability in soil environment. In order to explore the interactions between GPS and Cu, subacute toxicity tests of Cu and GPS on soil invertebrate earthworms (Eisenia fetida) were conducted.
View Article and Find Full Text PDFEcotoxicology
November 2012
Glyphosate (GPS) is a wildly-used pesticide throughout the world. It affects metal behaviors in soil-water system as its functional groups such as amine, carboxylate and phosphonate can react with metal ions to form metal complexes. The reaction will result in the decreasing of heavy metal bioavailability.
View Article and Find Full Text PDF