Loop B serine of a plasma membrane aquaporin type PIP2 but not PIP1 plays a key role in pH sensing.

Biochim Biophys Acta

Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA, UBA-CONICET), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bu

Published: November 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the plant kingdom, the plasma membrane intrinsic aquaporins (PIPs) constitute a highly conserved group of water channels with the capacity of rapidly adjusting the water permeability (P) of a cell by a gating response. Most evidence regarding this mechanism was obtained by different biophysical approaches including the crystallization of a Spinaca olaracea PIP2 aquaporin (SoPIP2;1) in an open and close conformation. A close state seems to prevail under certain stimuli such as cytosolic pH decrease, intracellular Ca concentration increase and dephosphorylation of specific serines. In this work we decided to address whether the state of phosphorylation of a loop B serine - highly conserved in all PIPs - combined with cytosolic acidification can jointly affect the gating response. To achieve this goal we generated loop B serine mutants of two PIP types of Fragaria×ananassa (FaPIP2;1S121A and FaPIP1;1S131A) in order to simulate a dephosphorylated state and characterize their behavior in terms of P and pH sensitivities. The response was tested for different co-expressions of PIPs (homo and heterotetramers combining wild-type and mutant PIPs) in Xenopus oocytes. Our results show that loop B serine phosphorylation status affects pH gating of FaPIP2;1 but not of FaPIP1;1 by changing its sensitivity to more alkaline pHs. Therefore, we propose that a counterpoint of different regulatory mechanisms - heterotetramerization, serine phosphorylation status and pH sensitivity - affect aquaporin gating thus ruling the P of a membrane that expresses PIPs when fast responses are mandatory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2016.08.002DOI Listing

Publication Analysis

Top Keywords

loop serine
16
plasma membrane
8
highly conserved
8
gating response
8
serine phosphorylation
8
phosphorylation status
8
pips
5
loop
4
serine plasma
4
membrane aquaporin
4

Similar Publications

UHMK1 Promotes Prostate Cancer Progression through a Positive Feedback Loop with MTHFD2.

Oncol Res

September 2025

Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.

Background: U2AF homology motif kinase 1 (UHMK1) has been associated with RNA processing and protein phosphorylation, thereby influencing tumor progression. The study aimed to explore its regulatory mechanisms and biological functions in human prostate cancer (PCa).

Methods: In this study, we systematically evaluated the expression and prognostic significance of UHMK1 in public databases, followed by validation through immunohistochemistry (IHC) in PCa specimens.

View Article and Find Full Text PDF

In many model organisms, the circadian system has been proposed to comprise multiple oscillators that interact to promote accuracy of the clock as well as intricacies of rhythmic outputs. In Neurospora crassa, the circadian transcriptional/translational loop comprising of the FRQ (Frequency) and WCC (White Collar Complex) proteins has been instrumental in explaining many attributes of the clock including entrainment and rhythms in development and gene expression; in addition, some non-circadian oscillations can be unmasked when the FRQ-WCC feedback loop is eliminated. These rhythms have often lost defining circadian characteristics and are potentially controlled by other oscillators, termed FRQ-less oscillators (FLOs) in Neurospora.

View Article and Find Full Text PDF

Toxoplasma gondii is a highly successful intracellular mammalian and avian pathogen that must adapt to a wide range of intracellular and extracellular environments. A mechanism that may support this is the modification of hydroxyamino acid rich sequences of nucleocytoplasmic proteins with O-fucose. O-fucosylation of possibly hundreds of proteins is mediated by a single highly conserved nucleocytoplasmic enzyme.

View Article and Find Full Text PDF

The CGG triplet repeat binding protein 1 (CGGBP1) binds to CGG repeats and has several important cellular functions, but how this DNA sequence-specific binding factor affects transcription and replication processes is an open question. Here, we show that CGGBP1 binds human gene promoters containing short (< 5) CGG-repeat tracts prone to R-loop formation. Loss of CGGBP1 leads to deregulated transcription, transcription-replication-conflicts (TRCs) and accumulation of Serine-5 phosphorylated RNA polymerase II (RNAPII), indicative of promoter-proximal stalling and a defect in transcription elongation.

View Article and Find Full Text PDF

Hepatitis C virus NS3 helicase contributes to (-) strand RNA synthesis.

Nat Commun

August 2025

Department Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty, Heidelberg, Germany.

Many positive strand RNA viruses encode helicases, but their distinct functions in viral replication cycles is poorly understood. Here, we identify a mutation in the helicase domain of HCV non-structural protein 3 (NS3h), D1467G, which specifically affects (-) strand synthesis, phenocopying mutations in the 3' untranslated region of the genome. D1467G does not impair helicase activity in vitro or the binding of NS3h to critical cis-acting RNA elements, but reduces the interaction of NS3h and NS5B polymerase, potentially contributing to defective (-) strand synthesis.

View Article and Find Full Text PDF