Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this manuscript, we demonstrate a method based on atomic force microscopy which enables local probing of surface wettability. The maximum pull-off force, obtained from force spectroscopy shows a remarkable correlation with the macroscopically observed water contact angle, measured over a wide variety of surfaces starting from hydrophilic, all the way through to hydrophobic ones. This relationship, consequently, facilitates the establishment of a universal behaviour. The adhesion forces scale with the polar component of surface energy. However, no such relation could be established with the dispersive component. Hence, we postulate that the force(s) which enable us to correlate the force spectroscopy data measured on the nanoscale to the macroscopic contact angle are primarily arising from electrostatic-dipole-dipole interactions at the solid-liquid interface. London forces play less of a role. This effect in is line with density functional theory (DFT) calculations suggesting a higher degree of hydroxylation of hydrophilic surfaces. This result shows that molecular simulations and measurements on an atomic scale can be extrapolated to macroscopic surface wetting problems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr02076cDOI Listing

Publication Analysis

Top Keywords

surface wettability
8
force spectroscopy
8
contact angle
8
correlation nanoscale
4
nanoscale behaviour
4
forces
4
behaviour forces
4
forces macroscale
4
surface
4
macroscale surface
4

Similar Publications

Impact of wettability heterogeneity on methane hydrate growth kinetics in partially water-saturated sediments.

J Colloid Interface Sci

August 2025

Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),

Hypothesis: Gas hydrate formation in sediments is influenced by the availability of gas-water interfacial areas, which governs gas-water interactions. The surface wettability of sediment particles is expected to affect the spatial distribution of water within the pore space, thereby altering the extent of gas-liquid contact. Consequently, by tuning the wettability heterogeneity of the sediment, the spatial distribution of pore water can be regulated, which in turn influences the gas-water interactions and the kinetics of gas hydrate formation.

View Article and Find Full Text PDF

Electroactive ceramic biomaterials on the principle of bone piezoelectricity towards advanced bone engineering.

Biomater Adv

September 2025

Graduate School of Medical and Dental Science, Institute of Science Tokyo, 15-45 Yushima, Bunkyo, Tokyo, 113-8510, Japan; Advanced Central Research Organization, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo, 173-8605, Japan.

This review concentrates on the electroactive ceramic biointerfaces inspired by bone piezoelectricity for advanced ceramic biomaterials. Bone generates electrical potentials through the piezoelectric properties of collagen fibrils and apatite minerals under mechanical loading. These electrical signals influence osteoconductivity and regenerative capacity by osteogenic cells.

View Article and Find Full Text PDF

In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.

View Article and Find Full Text PDF

Polyester-coated stainless-steel sheets using silica gel microparticles as surface pre-modifiers: a novel approach to determine selective serotonin reuptake inhibitors in saliva samples by direct infusion tandem mass spectrometry.

Mikrochim Acta

September 2025

Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.

Stainless-steel substrates have grown in importance in the development of planar sorptive phases. However, the reduced wettability of polished sheets makes difficult their functionalization. This limitation can be solved by using amorphous silica gel microparticles as superficial guides.

View Article and Find Full Text PDF

This study evaluates the cytotoxicity, apoptosis, and expression of stress-related genes (TP53 and NF-κB) in response to gingiva-colored indirect composite resins used for veneering tooth or implant-supported prostheses or characterization of denture bases. A total of 120 disc-shaped specimens (2 mm thick, 10 mm diameter) gingiva-colored indirect composite resin specimens (Group A: Anaxgum-Anaxdent, Group B: Crealing Paste Gum-Bredent, Group G: Gradia Gum-GC, Group N: SR Nexco GUM-Ivoclar Vivadent) were prepared and divided into four groups (n = 10 per group). Surface wettability was assessed using water contact angle (WCA) measurements.

View Article and Find Full Text PDF