Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina, but the role of endocannabinoids in vision is not fully understood. Here, we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl(-) levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles, we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low-light conditions. These results highlight a role for endocannabinoids in vision and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl(-) regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987138PMC
http://dx.doi.org/10.7554/eLife.15932DOI Listing

Publication Analysis

Top Keywords

cb1r activation
12
retinal ganglion
8
role endocannabinoids
8
endocannabinoids vision
8
novel mechanism
8
intrinsic excitability
8
inhibition nkcc1
8
endocannabinoid signaling
4
signaling enhances
4
enhances visual
4

Similar Publications

Synthetic cannabinoid receptor agonists (SCRAs) are a class of novel psychoactive substances whose prevalence in illegal markets continues to grow. Δ-tetrahydrocannabinol (THC) is the primary intoxicating compound present in cannabis and is well-known to behave as a partial agonist at both the type 1 and 2 cannabinoid receptors (CB1R, CB2R). Unlike THC, the SCRAs characterized to date generally behave as CB1R and/or CB2R full agonists.

View Article and Find Full Text PDF

Background: Dysregulation of the endocannabinoid system (eCBS) and the loss of CB1 receptors (CB1R) in the basal ganglia are well-established hallmarks of Huntington's disease (HD). As a result, significant research efforts have focused on targeting the eCBS to alleviate motor disturbances associated with the disease. Beyond its role in motor control, the eCBS is a complex signaling network critically involved in regulating learning and memory.

View Article and Find Full Text PDF

Objective: Emerging evidence suggests lipid metabolism dysregulation contributes to autism spectrum disorders (ASD), with the endocannabinoid system (cannabinoid receptors CB1R/CB2R) implicated in lipid homeostasis. This study investigated whether CB1R/CB2R activation improves hippocampal lipid metabolism and ASD-like behaviors in a valproic acid (VPA)-induced ASD rat model.

Methods: Male offspring from dams exposed to VPA (600 mg/kg, i.

View Article and Find Full Text PDF

Granulocyte colony-stimulating factor (G-CSF) has the capacity to enhance brain repair following various injuries to brain. G-CSF treatment after TBI in rodents has been reported to promote brain repair, hippocampal neurogenesis, and behavioral recovery. Delta9-THC treatment also enhances brain repair after TBI, and triggers upregulation of G-CSF in brain, raising the question as to whether G-CSF mediates recovery via the eCBs.

View Article and Find Full Text PDF