98%
921
2 minutes
20
Background: Tumor associated macrophages (TAMs) and CXC chemokine receptor 4 (CXCR4) have emerged as potential biomarkers in various human cancers. The aims of this study were to investigate the clinical characteristics of anaplastic thyroid cancer (ATC) patients according to the TAM numbers in the tumor tissue, and to evaluate the associations between CXCR4 expressions and macrophage densities in ATC tumor microenvironment.
Methods: Total 14 ATC samples from thyroid tissue microarray were used. Immunohistochemical staining was performed using anti-CD163 and anti-CXCR4 antibodies. According to the immunoreactivity of CD163, all subjects were divided into two groups: low-CD163 (n=8) and high-CD163 (n=6) groups.
Results: The mean diagnostic age was 65±7 years and the median tumor size was 4.3 cm, ranging 2.5 to 15 cm. Clinicopathological characteristics were not significantly different between low-CD163 and high-CD163 groups, while age of diagnosis was younger in high-CD163 group than that of low-CD163 group with marginal significance (56.9±5.5 years vs. 67.5±6.8 years, P=0.09). However, overall survival was significantly reduced in high-CD163 group (5.5 months [range, 1 to 10]) compared with low-CD163 groups (8.8 months [range, 6 to 121); log-rank test, P=0.0443). Moreover, high-CD163 group showed strong CXCR4 expressions in both cancer and stromal compartments, while low-CD163 group showed relatively weak, stromal-dominant CXCR4 expressions. Additionally, CD163 and CXCR4 expressions showed a strong positive correlation (γ²=0.432, P=0.013).
Conclusion: Increased number of TAMs showed poor overall survival in ATC, suggesting TAMs are potentially a prognostic biomarker for ATC. CXCR4 expression was significantly correlated with CD163-positive TAM densities, which suggest the possible role of CXCR4 in TAM recruitments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053061 | PMC |
http://dx.doi.org/10.3803/EnM.2016.31.3.469 | DOI Listing |
Eur J Nucl Med Mol Imaging
September 2025
Department of PET-CT/MRI, NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
Objective: CXCR4 and integrin αβ play important roles in tumor biology and are highly expressed in multiple types of tumors. This study aimed to synthesize, preclinically evaluate, and clinically validate a novel dual-targeted PET imaging probe Ga-pentixafor-c(RGDfK) for its potential in imaging tumors.
Methods: The effects of Ga-pentixafor-c(RGDfK) on cell viability, targeting specificity, and affinity were assessed in the U87MG cells.
Naunyn Schmiedebergs Arch Pharmacol
September 2025
School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
Periodontal disease (PD) is a common and complex oral health problem that affects teeth and gums, leading to tooth loss, misalignment, and infection, with significant impact. Identifying the cause and developing new treatments is crucial. This study employed Mendelian randomization (MR), single-cell RNA sequencing (scRNA-seq), and integrated transcriptomics to identify key gene signatures associated with periodontitis.
View Article and Find Full Text PDFCurr Alzheimer Res
September 2025
School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia.
Introduction: Alzheimer's disease is expressed as chronic neuroinflammation in the brain, which results in neuronal dysfunction, aberrant protein folding, and declining cognitive abilities. miR-146a-5p is a potent anti-inflammatory agent that can be used to treat several inflammatory diseases, as well as promote wound healing. Our research aimed to utilize network pharmacology to elucidate the therapeutic potential of miR-146a-5p in treating Alzheimer's disease using a biocomputational approach.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Faculty of Applied Sciences, Macao Polytechnic University, Macao. Electronic address:
Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.
View Article and Find Full Text PDFJ Am Heart Assoc
September 2025
Department of Neurosurgery Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing China.
Background: The cellular composition and molecular mechanisms of the pathological arteries in Moyamoya disease (MMD) remain poorly understood. To improve our understanding of pathogenesis in MMD, we aimed to comprehensively map the cellular composition and molecular alterations within the pathological arteries of patients with MMD.
Methods: Superficial temporal artery samples were collected from patients with MMD (n=2) and healthy controls (n=3), yielding a total of 26 371 cells that were used for single-cell RNA sequencing.