98%
921
2 minutes
20
Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960343 | PMC |
http://dx.doi.org/10.1155/2016/5352412 | DOI Listing |
Biochim Biophys Acta Rev Cancer
September 2025
Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Hunan 3D Printing Engineering Research Center of Oral Care
Innate immune cells play an important role in the immune system and are mainly responsible for the rapid response to foreign pathogens, damaged tissues, or abnormal cells. However, their immunophenotype in oral squamous cell carcinoma (OSCC) is altered due to the influence of various components within the tumour microenvironment, including tumour cells, cancer associated fibroblasts, and the extracellular matrix. This immunophenotypic shift results in the suppression of anti-tumour-related immune functions and active participation in further remodelling of the tumour microenvironment.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.
Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.
Cureus
September 2025
Department of Oral Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, JPN.
Introduction Oral squamous cell carcinoma (OSCC), which is the most common cancer type in head and neck cancers, remains a serious health problem because of its high mortality. Treatment of OSCC is mainly performed with a combination of surgery and anticancer agents. However, despite the recent development of anticancer agents, the clinical outcome of OSCC has yet to be improved.
View Article and Find Full Text PDFPLoS Genet
September 2025
Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
Lymph node metastasis (LNM) is a critical prognostic factor for patients with oral squamous cell carcinoma (OSCC). Previous research has implicated the partial epithelial-to-mesenchymal transition of tumor cells and myofibroblastic cancer-associated fibroblasts (myCAFs) in the LNM process. However, the underlying molecular mechanisms remain poorly understood.
View Article and Find Full Text PDFObjective: This study aimed to elucidate the functional role and molecular mechanisms of Serine Peptidase Inhibitor Kazal Type 1 (SPINK1) in oral squamous cell carcinoma (OSCC) through integrative analysis of single-cell RNA sequencing (scRNA-seq) data.
Materials And Methods: Cellular subpopulations within OSCC were stratified using transcriptomic datasets from the GEO database. Cell-cell communication networks were reconstructed to map ligand-receptor interactions, while Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) were employed to systematically investigate SPINK1-associated signaling pathways.