98%
921
2 minutes
20
Quantitative phase imaging has been an important labeling-free microscopy modality for many biomedical and material science applications. In which, ultra-fast quantitative phase imaging is indispensable for dynamic or transient characteristics analysis. Conventional wide field optical interferometry is a common scheme for quantitative phase imaging, while its data acquisition rate is usually hindered by the frame rate of arrayed detector. By utilizing novel balanced-photo-detector based digital optics coherent detection techniques, we report on a method of constructing ultra-fast quantitative phase microscopy at the line-scan rate of 100 MHz with ~2 μm spatial resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.017159 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305.
The iron-based high-[Formula: see text] superconductors (SCs) exhibit rich phase diagrams with intertwined phases, including magnetism, nematicity, and superconductivity. The superconducting [Formula: see text] in many of these materials is maximized in the regime of strong nematic fluctuations, making the role of nematicity in influencing the superconductivity a topic of intense research. Here, we use the AC elastocaloric effect (ECE) to map out the phase diagram of Ba(FeCo)As near optimal doping.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, Louisiana, United States of America.
Introduction: Neglected tropical diseases (NTDs) are a priority in the public health agenda for Côte d'Ivoire, with persons living with disabilities due to NTDs (PD-NTDs) experiencing many challenges in their daily lives. Current policies do not sufficiently support PD-NTDs, thereby highlighting the need to identify opportunities for policy improvement.
Methods: This study was carried out in two phases: first to identify the current needs (formative phase) and then to develop a pilot strategy (implementation phase).
J Vis Exp
August 2025
Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology.
We present multimodal confocal Raman micro-spectroscopy (RS) and tomographic phase microscopy (TPM) for quick morpho-chemical phenotyping of human breast cancer cells (MDA-MB-231). Leveraging the non-perturbative nature of these advanced microscopy techniques, we captured detailed morpho-molecular data from living, label-free cells in their native physiological environment. Human bias-free data processing pipelines were developed to analyze hyperspectral Raman images (spanning Raman modes from 600 cm to 1800 cm, which uniquely characterize a wide range of molecular bonds and subcellular structures), as well as morphological data from three-dimensional refractive index tomograms (providing measurements of cell volume, surface area, footprint, and sphericity at nanometer resolution, alongside dry mass and density).
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDFJ Neuromuscul Dis
September 2025
Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.
Background: Electrical impedance myography (EIM) has been proposed as an efficient, non-invasive biomarker of muscle composition in facioscapulohumeral muscular dystrophy (FSHD).
Objective: We investigate whether EIM parameters are associated with muscle structure measured by magnetic resonance imaging (MRI), muscle histology, and transcriptomic analysis as well as strength at the individual leg muscle level.
Methods: We performed a multi-center cross-sectional study enrolling 33 patients with FSHD.