98%
921
2 minutes
20
In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970173 | PMC |
http://dx.doi.org/10.3390/s16071130 | DOI Listing |
Unlabelled: Passive Acoustic Mapping (PAM) is rapidly emerging as a ubiquitous tool for real-time localization and monitoring of therapeutic ultrasound treatments involving cavitation in the context of safety or efficacy. The ability of PAM to spatially quantify and resolve cavitation activity offers a unique opportunity to correlate the energy of cavitation phenomena with locally observed bioeffects.
Objective: We aim to develop methods of measuring and reporting spatio-temporally varying cavitation energies that are energy-preserving, device-independent, and adequately normalized to the volume of tissue being affected by the reported cavitation activity.
J Acoust Soc Am
September 2025
Laboratory of Noise and Audio Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
The deconvolution approach has become a standard method for high-resolution acoustic source mapping, but it suffers from a heavy computational burden. Deep learning-based methods have shown promising progress but often rely on single-type input features and ignore the position- and frequency-dependent variabilities of the point spread function (PSF), which leads to a decline in localization accuracy. This paper proposes a supervised learning framework based on dual-encoder U-net architecture to convert beamforming maps into a high-resolution map of true source strength distribution.
View Article and Find Full Text PDFFront Neurosci
July 2025
Department of Engineering, University of Naples Parthenope, Naples, Italy.
Within this manuscript a deep learning algorithm designed to achieve both spatial and temporal source reconstruction based on signals captured by MEG devices is introduced. Brain signal estimation at source level is a significant challenge in magnetoencephalographic (MEG) data processing. Traditional algorithms offer excellent temporal resolution but are limited in spatial resolution due to the inherent ill-posed nature of the problem.
View Article and Find Full Text PDFImaging Neurosci (Camb)
August 2025
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States.
The transition from childhood into adolescence is associated with marked increases in testosterone, a sex hormone that has been linked with significant changes in brain structure and function. However, the majority of the extant literature on sex hormone effects has focused on structural brain development, with far fewer studies examining changes in the neural dynamics serving higher-order cognitive function and behavioral improvements with development. Herein, we investigated whether the neural oscillatory dynamics serving selective attention were sensitive to testosterone levels as a marker of development in a sample of 87 participants aged 6-13 years old.
View Article and Find Full Text PDFDiscov Nano
September 2025
Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Ultrasonic phased array technology enables flexible and controllable beamforming through precise phase delay control of individual array elements in the transducer, facilitating dynamic focusing, beam steering, and beamforming. This study presents a 64-channel system achieving 1 ns delay resolution using FPGA-based phase-locked loops. Through systematic testing and calibration of the delay error in the phased array transmission driving system, the actual delay error was successfully controlled within 1 ns.
View Article and Find Full Text PDF