98%
921
2 minutes
20
Climate projections predict higher precipitation variability with more frequent dry extremes(1). CO2 assimilation of forests decreases during drought, either by stomatal closure(2) or by direct environmental control of sink tissue activities(3). Ultimately, drought effects on forests depend on the ability of forests to recover, but the mechanisms controlling ecosystem resilience are uncertain(4). Here, we have investigated the effects of drought and drought release on the carbon balances in beech trees by combining CO2 flux measurements, metabolomics and (13)CO2 pulse labelling. During drought, net photosynthesis (AN), soil respiration (RS) and the allocation of recent assimilates below ground were reduced. Carbohydrates accumulated in metabolically resting roots but not in leaves, indicating sink control of the tree carbon balance. After drought release, RS recovered faster than AN and CO2 fluxes exceeded those in continuously watered trees for months. This stimulation was related to greater assimilate allocation to and metabolization in the rhizosphere. These findings show that trees prioritize the investment of assimilates below ground, probably to regain root functions after drought. We propose that root restoration plays a key role in ecosystem resilience to drought, in that the increased sink activity controls the recovery of carbon balances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nplants.2016.111 | DOI Listing |
Environ Technol
September 2025
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China.
The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4.
The size and composition of local species pools are, in part, determined by past dispersal events. Predicting how communities respond to future disturbances, such as fluctuating environmental conditions, requires knowledge of such histories. We assessed the influence of a historical dispersal event on community assembly by simulating various scales of dispersal for 240 serpentine annual plant communities that experienced a large shift from drought to high rainfall conditions over three years.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Colorado Water Center, Colorado State University, Fort Collins, CO, 80523, USA.
Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.
View Article and Find Full Text PDFPlant Cell Physiol
September 2025
Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC.
Water deficit stress causes devastating loss of crop yield worldwide. Improving crop drought resistance has become an urgent issue. Here we report that a group of abscisic acid (ABA)/drought stress-induced monocot-specific, intrinsically disordered, and highly proline-rich proteins, REPETITIVE PROLINE-RICH PROTEINS (RePRPs), play pivotal roles in drought resistance in rice seedlings.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.
Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.
View Article and Find Full Text PDF