Publications by authors named "Marcus Schaub"

Plants' non structural carbohydrates (NSCs) serve as their capital for growth, reproduction, defense and survival. To increase the NSC availability of carbon-limited trees, a recent study revealed the possibility of adding exogenous soluble sugars to carbon-starved trees. This provides an opportunity to investigate carbon allocation between source and sink, as well as the growth and physiological responses to external sugars.

View Article and Find Full Text PDF

In most tree species, roots serve as major carbon (C) sinks, where C is depleted first when C assimilation is limited. Recent methodological advancements in sugar infusion allow for a better understanding of physiological processes alleviating root C limitation. We conducted a glasshouse experiment with maple (Acer pseudoplatanus L.

View Article and Find Full Text PDF

Tree net carbon (C) uptake may decrease under global warming, as higher temperatures constrain photosynthesis while simultaneously increasing respiration. Thermal acclimation might mitigate this negative effect, but its capacity to do so under concurrent soil drought remains uncertain. Using a 5-yr open-top chamber experiment, we determined acclimation of leaf-level photosynthesis (thermal optimum T and rate A) and respiration (rate at 25°C R and thermal sensitivity Q) to chronic +5°C warming, soil drought, and their combination in beech (Fagus sylvatica L.

View Article and Find Full Text PDF

Premise: Tree structure and function are constrained by and acclimate to climatic conditions. Drought limits plant growth and carbon acquisition and can result in "legacy" effects that last beyond the period of water stress. Leaf and twig-level legacy effects of past water abundance, such as that experienced by trees that established under wetter conditions are unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding how both plants and soil organisms respond to global changes is vital for ecosystem health and biodiversity.
  • The study analyzes a large dataset to show that global change factors boost plant biomass but reduce plant species diversity, while the effects on soil organisms vary and are unpredictable.
  • The findings emphasize the need for integrated research that considers both aboveground and belowground interactions to better anticipate the impacts of global environmental changes.
View Article and Find Full Text PDF

We investigate the impact of a 20-yr irrigation on root water uptake (RWU) and drought stress release in a naturally dry Scots pine forest. We use a combination of electrical resistivity tomography to image RWU, drone flights to image the crown stress and sensors to monitor soil water content. Our findings suggest that increased water availability enhances root growth and resource use efficiency, potentially increasing trees' resistance to future drought conditions by enabling water uptake from deeper soil layers.

View Article and Find Full Text PDF

The loss of leaves and needles in tree crowns and tree mortality are increasing worldwide, mostly as a result of more frequent and severe drought stress. Scots pine (Pinus sylvestris L.) is a tree species that is strongly affected by these developments in many regions of Europe and Asia.

View Article and Find Full Text PDF

Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries.

View Article and Find Full Text PDF

Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues.

View Article and Find Full Text PDF

The link between above- and belowground communities is a key uncertainty in drought and rewetting effects on forest carbon (C) cycle. In young beech model ecosystems and mature naturally dry pine forest exposed to 15-yr-long irrigation, we performed C pulse labeling experiments, one during drought and one 2 wk after rewetting, tracing tree assimilates into rhizosphere communities. The C pulses applied in tree crowns reached soil microbial communities of the young and mature forests one and 4 d later, respectively.

View Article and Find Full Text PDF

Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particularly the importance of morphological versus hydraulic plasticity. Using a long-term (20 years) irrigation experiment in a natural forest, we investigated the acclimation of Scots pine (Pinus sylvestris) morpho-anatomical traits (stomatal anatomy and crown density) and hydraulic traits (leaf water potential, vulnerability to cavitation (Ψ50), specific hydraulic conductivity (Ks), and tree water deficit) to prolonged changes in soil moisture.

View Article and Find Full Text PDF

Progressively warmer and drier climatic conditions impact tree phenology and carbon cycling with large consequences for forest carbon balance. However, it remains unclear how individual impacts of warming and drier soils differ from their combined effects and how species interactions modulate tree responses. Using mesocosms, we assessed the multiyear impact of continuous air warming and lower soil moisture alone or in combination on phenology, leaf-level photosynthesis, nonstructural carbohydrate concentrations, and aboveground growth of young European beech (Fagus sylvatica L.

View Article and Find Full Text PDF

Global warming and droughts push forests closer to their thermal limits, altering tree carbon uptake and growth. To prevent critical overheating, trees can adjust their thermotolerance (T ), temperature and photosynthetic optima (T and A ), and canopy temperature (T ) to stay below damaging thresholds. However, we lack an understanding of how soil droughts affect photosynthetic thermal plasticity and T regulation.

View Article and Find Full Text PDF

Many carbon-related physiological questions in plants such as carbon (C) limitation or starvation have not yet been resolved thoroughly due to the lack of suitable experimental methodology. As a first step towards resolving these problems, we conducted infusion experiments with bonsai trees () and young maple trees () in greenhouse, and with adult Scots pine trees () in the field, that were "fed" with C-labelled glucose either through the phloem or the xylem. We then traced the C-signal in plant organic matter and respiration to test whether trees can take up and metabolize exogenous sugars infused.

View Article and Find Full Text PDF

After reaching phytotoxic levels during the last century, tropospheric ozone (O3) pollution is likely to remain a major concern in the coming decades. Despite similar injury processes, there is astounding interspecific-and sometimes intraspecific-foliar symptom variability, which may be related to spatial and temporal variation in injury dynamics. After characterizing the dynamics of physiological responses and O3 injury in the foliage of hybrid poplar in an earlier study, here we investigated the dynamics of changes in the cell structure occurring in the mesophyll as a function of O3 treatment, time, phytotoxic O3 dose (POD0), leaf developmental stage, and mesophyll layer.

View Article and Find Full Text PDF

Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events.

View Article and Find Full Text PDF

Trees have been used for phytoremediation and as biomonitors of air pollution. However, the mechanisms by which trees mitigate nanoparticle pollution in the environment are still unclear. We investigated whether two important tree species, European beech (Fagus sylvatica L.

View Article and Find Full Text PDF

Increased temperature and prolonged soil moisture reduction have distinct impacts on tree photosynthetic properties. Yet, our knowledge of their combined effect is limited. Moreover, how species interactions alter photosynthetic responses to warming and drought remains unclear.

View Article and Find Full Text PDF

Future climate will be characterized by an increase in frequency and duration of drought and warming that exacerbates atmospheric evaporative demand. How trees acclimate to long-term soil moisture changes and whether these long-term changes alter trees' sensitivity to short-term (day to months) variations of vapor pressure deficit (VPD) and soil moisture is largely unknown. Leaf gas exchange measurements were performed within a long-term (17 years) irrigation experiment in a drought-prone Scots pine-dominated forest in one of Switzerland's driest areas on trees in naturally dry (control), irrigated, and 'irrigation-stop' (after 11 years of irrigation) conditions.

View Article and Find Full Text PDF

Summer droughts strongly affect soil organic carbon (SOC) cycling, but net effects on SOC storage are unclear as drought affects both C inputs and outputs from soils. Here, we explored the overlooked role of soil fauna on SOC storage in forests, hypothesizing that soil faunal activity is particularly drought-sensitive, thereby reducing litter incorporation into the mineral soil and, eventually, long-term SOC storage. In a drought-prone pine forest (Switzerland), we performed a large-scale irrigation experiment for 17 years and assessed its impact on vertical SOC distribution and composition.

View Article and Find Full Text PDF

Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries.

View Article and Find Full Text PDF

Tree stems have been identified as sources of volatile organic compounds (VOCs) that play important roles in tree defence and atmospheric chemistry. Yet, we lack understanding on the magnitude and environmental drivers of stem VOC emissions in various forest ecosystems. Due to the increasing importance of extreme drought, we studied drought effects on the VOC emissions from mature Scots pine (Pinus sylvestris L.

View Article and Find Full Text PDF

The intensity and frequency of droughts events are projected to increase in future with expected adverse effects for forests. Thus, information on the dynamics of tree water uptake from different soil layers during and after drought is crucial. We applied an in situ water isotopologue monitoring system to determine the oxygen isotope composition in soil and xylem water of European beech with a 2-h resolution together with measurements of soil water content, transpiration and tree water deficit.

View Article and Find Full Text PDF

Monitoring early tree physiological responses to drought is key to understanding progressive impacts of drought on forests and identifying resilient species. We combined drone-based multispectral remote sensing with measurements of tree physiology and environmental parameters over two growing seasons in a 100-y-old Pinus sylvestris forest subject to 17-y of precipitation manipulation. Our goal was to determine if drone-based photochemical reflectance index (PRI) captures tree drought stress responses and whether responses are affected by long-term acclimation.

View Article and Find Full Text PDF