Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The link between above- and belowground communities is a key uncertainty in drought and rewetting effects on forest carbon (C) cycle. In young beech model ecosystems and mature naturally dry pine forest exposed to 15-yr-long irrigation, we performed C pulse labeling experiments, one during drought and one 2 wk after rewetting, tracing tree assimilates into rhizosphere communities. The C pulses applied in tree crowns reached soil microbial communities of the young and mature forests one and 4 d later, respectively. Drought decreased the transfer of labeled assimilates relative to the irrigation treatment. The C label in phospholipid fatty acids (PLFAs) indicated greater drought reduction of assimilate incorporation by fungi (-85%) than by gram-positive (-43%) and gram-negative bacteria (-58%). C label incorporation was more strongly reduced for PLFAs (cell membrane) than for microbial cytoplasm extracted by chloroform. This suggests that fresh rhizodeposits are predominantly used for osmoregulation or storage under drought, at the expense of new cell formation. Two weeks after rewetting, C enrichment in PLFAs was greater in previously dry than in continuously moist soils. Drought and rewetting effects were greater in beech systems than in pine forest. Belowground C allocation and rhizosphere communities are highly resilient to drought.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.19612DOI Listing

Publication Analysis

Top Keywords

rhizosphere communities
12
drought
8
pulse labeling
8
drought rewetting
8
rewetting effects
8
pine forest
8
communities
5
drought resistance
4
resistance resilience
4
resilience rhizosphere
4

Similar Publications

Root-knot nematodes (RKNs), particularly , are one of the most destructive plant-parasitic nematodes (PPNs) affecting crop production worldwide. Previous earlier study revealed that calcinated oyster shell powder (OSP) possessed excellent suppression of tobacco RKN disease. However, the suppression mechanism of OSP against RKNs still remains unrevealed.

View Article and Find Full Text PDF

Microbiome-Mediated Resistance of Wild Tomato to the Invasive Insect Prodiplosis longifila.

Environ Microbiol Rep

October 2025

Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.

Plant roots are colonised by diverse communities of microorganisms that can affect plant growth and enhance plant resistance to (a) biotic stresses. We investigated the role of the indigenous soil microbiome in the resistance of tomato to the invasive sap-sucking insect Prodiplosis longifila (Diptera: Cecidomyiidae). Native and agricultural soils were sampled from the Andes in Southern Ecuador and tested, in greenhouse bioassays, for leaf tissue damage caused by P.

View Article and Find Full Text PDF

Decentralized wastewater management using treatment wetlands: Effective removal of antibiotics, resistance genes and organic micropollutants.

Sci Total Environ

September 2025

Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.

Treatment wetlands (TW) are a popular choice for decentralized wastewater treatment, with substantial documentation on their capacity to manage conventionally monitored pollutants. However, most insights into their effectiveness against emerging contaminants come from lab and mesocosm studies with a limited number of compounds, highlighting knowledge gaps in their performance at full scale. This study provides a first long-term, full-scale assessment of TW ability to remove a large number of organic micropollutants (OMPs) and manage antibiotic resistance under real-world conditions.

View Article and Find Full Text PDF

From Barren Rock to Thriving Life: How Nitrogen Fuels Microbial Carbon Fixation in Deglaciated Landscapes.

Environ Sci Technol

September 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.

Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.

View Article and Find Full Text PDF

Survey of a grapevine microbiome through functional metagenomics.

Food Res Int

November 2025

Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, Italy. Electronic address:

Microorganisms colonizing grapevines possess diverse functional capabilities that influence the health, growth, productivity and, consequently, wine quality. In this study, spatial and temporal dynamics of the microbiome of Vitis vinifera cv. Barbera grapevine were determined by shotgun sequencing.

View Article and Find Full Text PDF